

Diesel Engine Oil Seminar 2009 - JASO Standards -

February, 2009

Japan Automobile Manufacturers Association, Inc.

JASO: Japanese Automobile Standard Organization

Supported by

PAJ Petroleum Association of Japan

for

the JASO Diesel Engine Oil Seminar 2009

<u>Contents :</u> JASO Diesel Oil Seminar 2009

Introduction

Engine & Oil Technologies

- Engine Technology
- Functions of Engine Oil & Examples

JASO Standards

- JASO DH-1 / DH-2 / DL-1
- JASO On-file System

Break 20'

Other Topics

- Biodiesel Fuel Impact on Diesel Engine and the Lubricant
- Japanese OEM Requirements for ATF
- Hydraulic Fluid Standards for Construction Machinery (JCMAS)

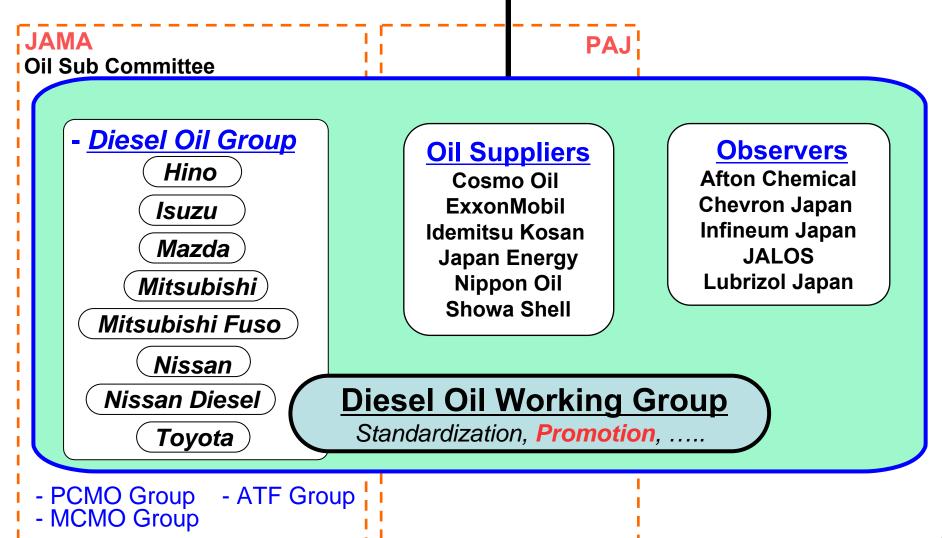
<u>Summary</u>

Discussion

Objectives of the JASO Diesel Engine Oil Seminar

To Improve Quality of Diesel Engine Oil for:

- >Environmental protection and global warming reduction
- >less fuel expenses, maintenance cost, disposal oil

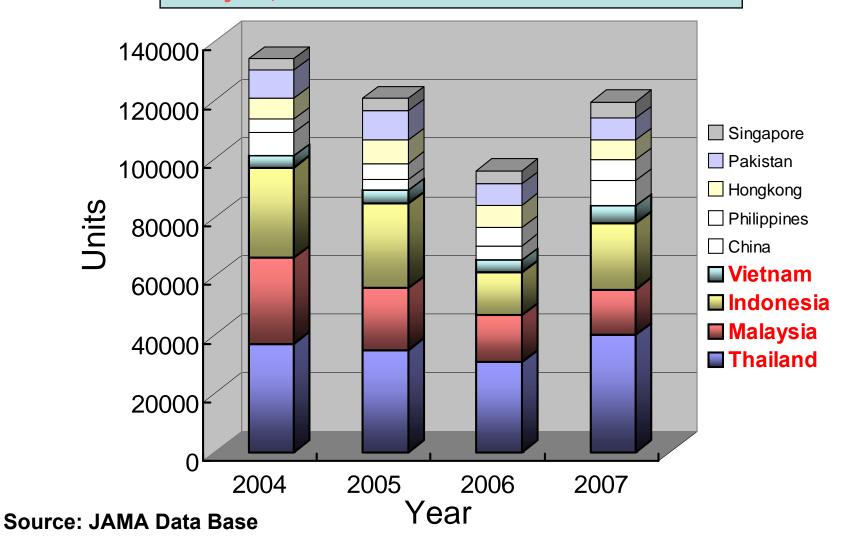

To Share Information of Japanese Activities Timely on:

- >Diesel Engine Oil Specifications,
- >Engine Technologies,
- >Bio-diesel Impact, etc.

Organizations

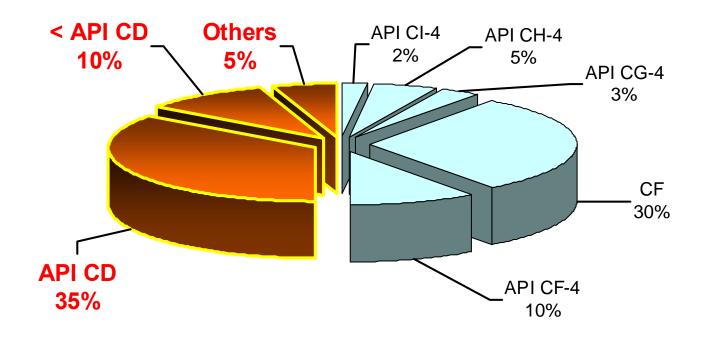
JAMA & PAJ Engine Oil Sub Committee

Memberships of DH-1 Promotion


Today's Speakers are in blue.

Industry	Name	Company
OEMs	Kenji Tomizawa	Hino Motors
	Makoto Okamoto	Mitsubishi Fuso Truck & Bus
	Tetsuji Ukai	Nissan Diesel
Oil Suppliers	Masaki Yamanaka	Showa Shell Sekiyu
	Noriyuki Naganuma	Japan Energy
Additive Suppliers	Jiro Magarifuchi	Chevron Japan
	Kazuo Nishimura	Lubrizol Japan
	Hitoshi Hamaguchi	Evonik Degussa Japan
Other	Koichi Yasuda	Japan Lubricating Oil Society (JALOS)

Japanese Truck & Bus Exports to Asia 2004-2007


Many trucks and buses are exported to Thailand, Malaysia, Indonesia and Vietnam.

Quality Grade of Heavy Duty Diesel Engine Oils in Indonesia

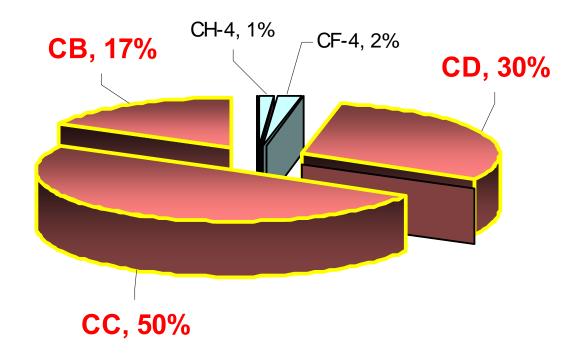
API CD and lower grade oils still make up a large part of the market today.



Source: SAE F&L Steering Committee for Asia 2006

Quality Grade of Heavy Duty Diesel Engine Oils in Thailand

API CF-4, JASO DH-1 grade and higher grade oils make up 100% of the market.



Source: SAE F&L Steering Committee for Asia 2006

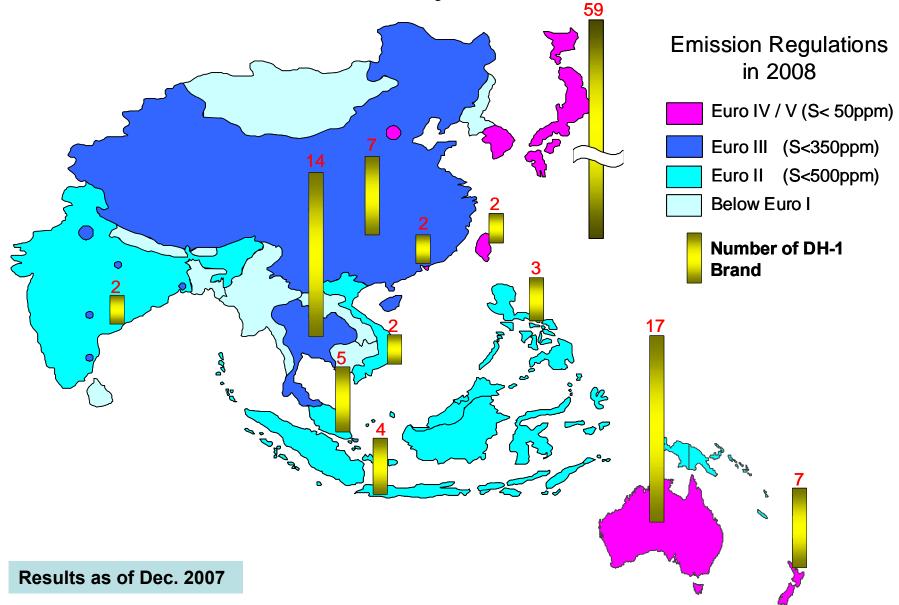
Quality Grade of Heavy Duty Diesel Engine Oils in Vietnam

API CD grade and lower grade oils still make up a large part of the market today.

Source: SAE F&L Steering Committee for Asia 2006

Past Activities for Promoting JASO Diesel Engine Oil Standards in Asia, Pacific

- Seminars (2005 2007)
 - JASO DH-1 promotion seminars were held at 6 countries in Asia, having more than 1,000 attendees.
- Survey (2007)
 - Surveyed <u>JASO DH-1 products</u> from Asian market
 - Investigated <u>measures for the DH-1 popularization</u> by questionnaire


Results

- 36 DH-1 brands in 11 countries, including 9 brands on-filed.
- JASO DH-1 has a potential market. (only 25%)
- Products and its benefit are not recognized well.
- JASO <u>On-file system</u> is not well known

JASO DH-1 Market Survey

- Number of DH-1 Brand -

Local Oil Company (ex Japan)

00															
Marketer	Brand	SAE	API	On- file	Australia	NewZealand	China	Thailand	Taiwan	Indonesia	India	Vietnam	Hong Kong	Malaysia	Philippines
BP-Castrol	Tection HD	15W40	CI-4+		Χ	Х									
BP-Castrol	Tection J-MAX	15W40	CH-4		Х	Х									
BP-Castrol	Tection Global	15W40	CI-4		X			Х							
BP-Castrol	RX	10W40	CF		X									Χ	
BP-Castrol	RX Diesel	20W50	CF-4		Х									Χ	
Caltex	Delo 400 Multigrade	15W40	CI-4+	Х	Χ	Χ	Χ	Χ					Χ		Χ
Caltex	DELO CXJ	15W40	CF	Х	Χ	Χ		Χ							
Caltex	Delo Gold	15W40	CH-4		Х			Х							
Hitachi	Hitachi Construction Machinery - Genuine Oil	15W40	CF-4	Х			Χ					Χ		Χ	
Idemitsu	APOLLOIL MULTI RUNNER DH-1	0W30,15W40		Х					Χ	Х					
Idemitsu	Idemitsu Extreme Diesel DH-1	15W40	?							Χ				Χ	
Mobil	Delvac 1	5W40	CI-4+		Х						Χ	Χ			Χ
Mobil	Delvac MX Extra	15W40	CI-4+		X	Х									- 1
Shell	Rimula Super	15W40	CH-4		Х	Χ		Х					Χ		
Shell	Rimula X	15W40	CH-4		Х	Х		Х			Х			Χ	Χ
BP-Castrol	Vanellus C7	15W40	CI-4		Х										
BP-Castrol	Tection Global ES	15W40	CI-4+		Х										
Fuchs	Titan Ultra MC 1040	10W40	CI-4+		Х										
Valvoline	Diesel extra long drain LD	15W40	CI-4		Х										
Valvoline	Premium Blue	15W40	CI-4		Х										
BP-Castrol	万里霸王	15W40	CI-4				Х								
Komatsu	Komatsu - Genuine Oil	15W40	CF-4	Х			X								
Shang Xi Japan Energy	JOMO DIESEL ENGINE OIL CF-4 15W-40	15W40	CF-4	Х			Χ								
Shang Xi Japan Energy	JOMO DIESEL ENGINE OIL CF-4 15W-40H	15W40	CF-4	Х			X								
Shell	金霸X	15W40	CH-4				X								
Caltex	Delo Sports Synthetic Blend	15W40	CI-4					Χ							
Conoco Phillips	Hydroclear Power D	15W-40	CI-4+					Χ							
Hino	Expert 21	20W50	CH-4					Х							
Isuzu	Besco Duramax	10W30	CH-4	X				Х							
Mobil	Delvac 1640		?					Х							
PTT	Dynamic XJ	SAE 40	CF					Х							
PTT	Dynamic Synthetic	5W40	CI-4					Χ							
Shell	Rimula R3X	15W40	CH-4					Χ							
Idemitsu	ID.RACING DIESEL DH-1	15W40	CF						Χ						
Hino	Hino Genuine Motor Oil	15W40 15W40	CH-4	Х						Х					
Pertamina	Meditran SX		CI-4							Χ					

<u>Contents :</u> JASO Diesel Oil Seminar 2009

Introduction

Engine & Oil Technologies

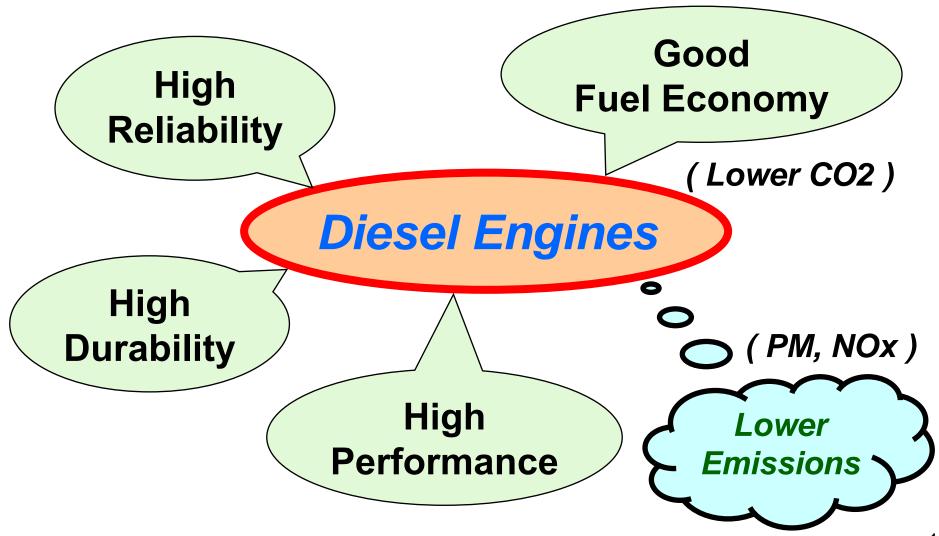
- Engine Technology
- Functions of Engine Oil & Examples

JASO Standards

- JASO DH-1 / DH-2 / DL-1
- JASO On-file System

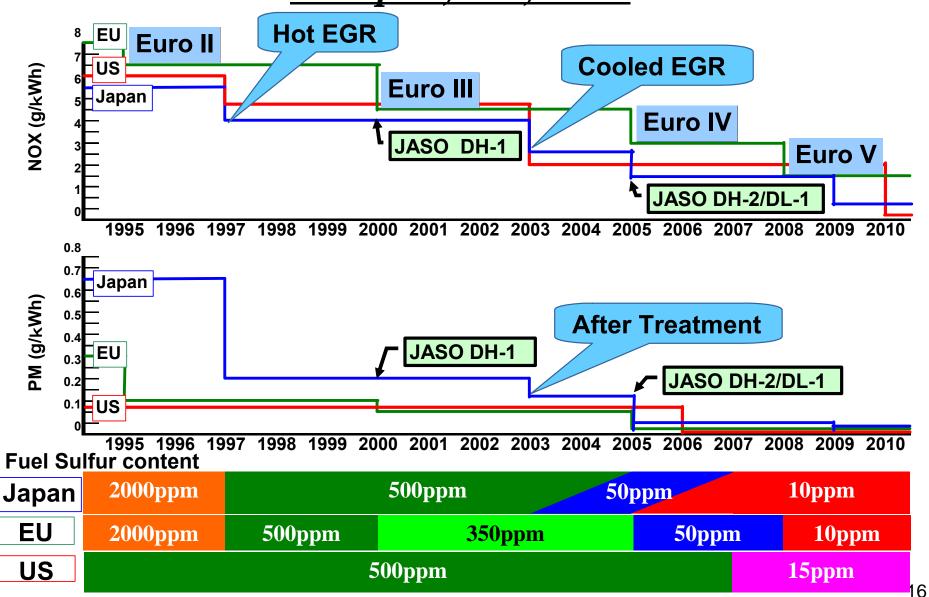
Break 20'

Other Topics


- Biodiesel Fuel Impact on Diesel Engine and the Lubricant
- Japanese OEM Requirements for ATF
- Hydraulic Fluid Standards for Construction Machinery (JACMAS)

<u>Summary</u>

Discussion


Performance Requirements for Heavy-Duty Diesel Engines

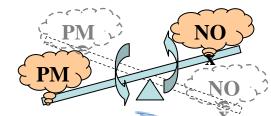
History of Exhaust Emissions Regulations

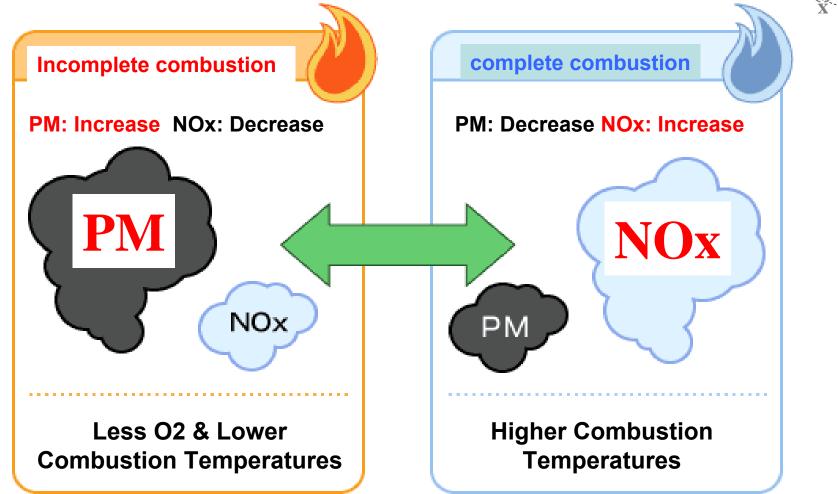
in Japan, EU, USA

Exhaust Gas Emissions Regulations in Asia (Heavy-Duty Diesels)

Revised Dec. 2008

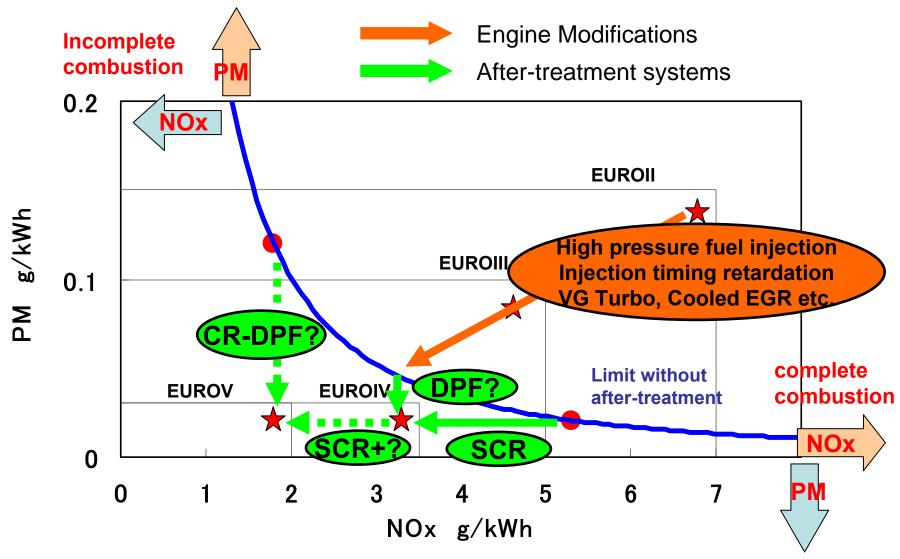
	Year	2006	2007	2008	2009	2010	2011	2012	2013	
	Europe	ope Euro V Euro V						EuroVI		
	USA	EPA04 EI	EPA04 EPA07 EPA10							
	Japan	JP05 (N	lew Lonç	(GVW>12t) (3.5 <gvw<=12t)< td=""></gvw<=12t)<>						
<u>ia</u>	Indonesia	Euro II	Euro II							
As	Thailand	Euro II			Euro Ⅲ			(EuroIV)		
	Vietnam		Eur	o II			(Euro III)			


Color	Fuel S Level	Cooled	After	Compatibility with JASO engine oil				
		EGR	Treatment	DH-1	DH-2			
	> 500 ppm	No	No	O(Shorter Drain Interval)	×			
	< 500 ppm	No	No	0	×			
	< 500 ppm	Yes/No	No	0	×			
	< 500 ppm	Yes*	No	0	×			
	< 50 ppm	Yes*	Yes*	×	0			
	< 15 ppm	Yes*	Yes*	×	0			

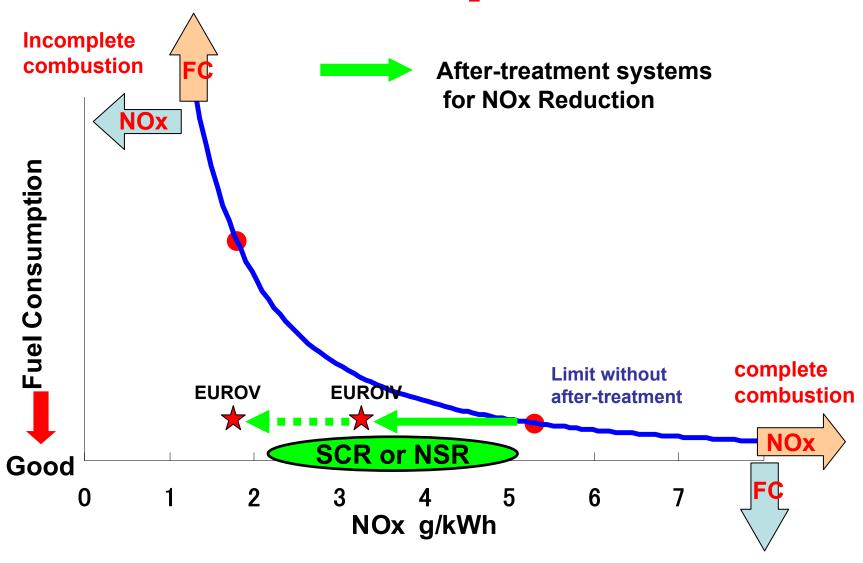

^{*:}Estimated

Trade-Off Relationship

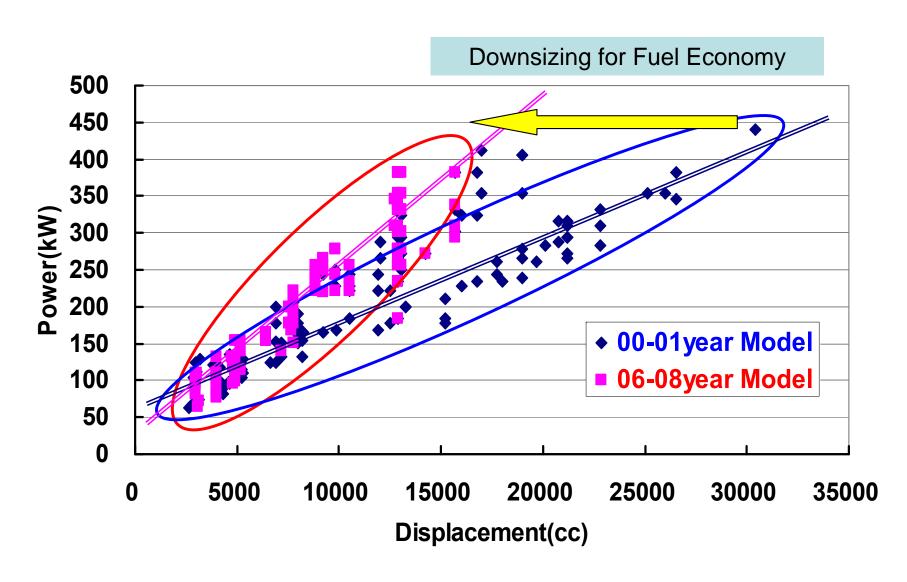
between PM and NOx



Source: NEDO Home Page



Strategy of Exhaust Emission Reduction in the EU

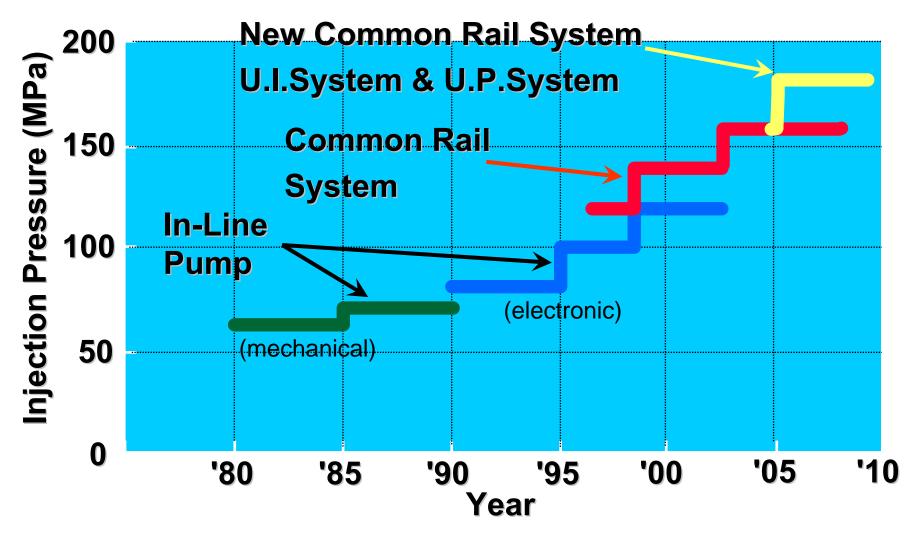


Trade-Off Relationship between Fuel Consumption and NOx

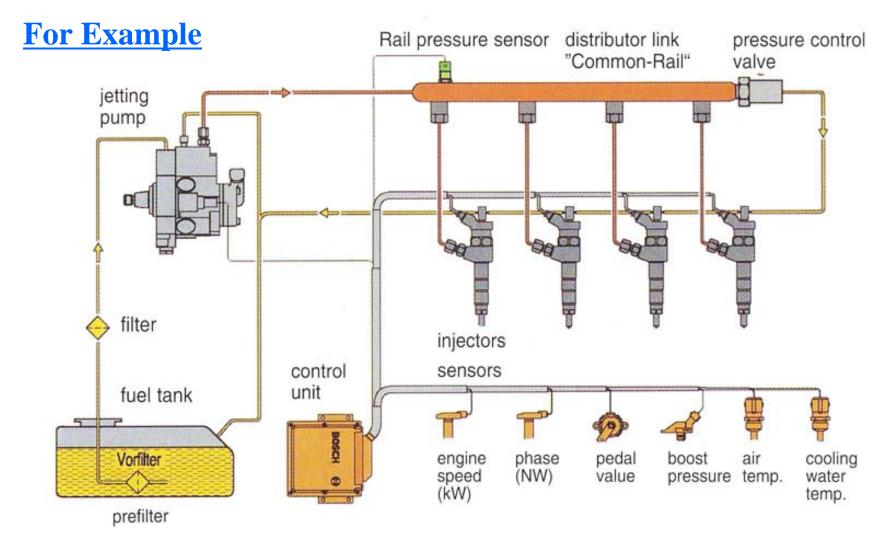
Relationship between Displacement and Power of Diesel Engine in Japan

Technology Adopted for JP05 * Truck

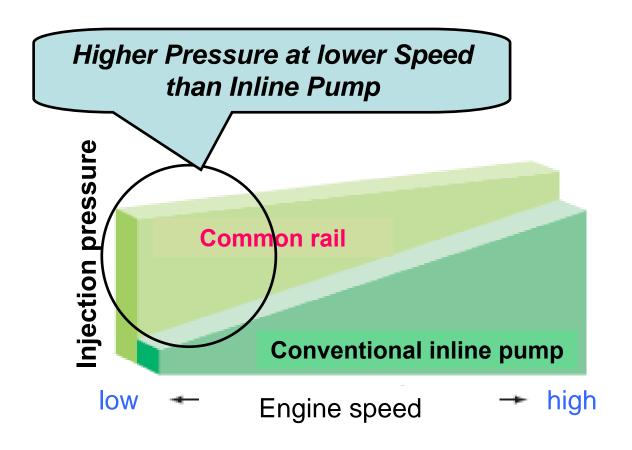
*New Long Term Exhaust Emission Regulation in Japan (equiv. to Euro IV)


	Engine	C		on Technolog	ЭУ	Aftertreatment Technology				
	Displacement			VG	Cooled	DPF Urea SCR		NSR	Hybrid	
	(Liter)	CR	Other	Turbocharger	EGR		Orca OOT	1401		
	2.95	$\sqrt{}$	-	-	$\sqrt{}$		-	-	-	
	2.98	$\sqrt{}$	1	-	$\sqrt{}$		-	1	-	
	2.98	$\sqrt{}$	ı	-	$\sqrt{}$		-	ı	$\sqrt{}$	
	3.00	$\sqrt{}$	-	$\sqrt{}$	$\sqrt{}$		-	-	-	
LD-Truck	3.00	$\sqrt{}$	ı	$\sqrt{}$	$\sqrt{}$		-	ı	$\sqrt{}$	
	4.01	$\sqrt{}$	1	\checkmark	$\sqrt{}$		-	1	-	
	4.01	$\sqrt{}$	ı	$\sqrt{}$	$\sqrt{}$		-	ı	$\sqrt{}$	
	4.01	$\sqrt{}$	-	$\sqrt{}$	$\sqrt{}$		-	$\sqrt{}$	-	
	4.73	$\sqrt{}$	1	$\sqrt{}$	$\sqrt{}$		-	1	-	
	4.90	$\sqrt{}$	ı	-	$\sqrt{}$		-	ı	-	
	5.19	$\sqrt{}$	-	$\sqrt{}$	$\sqrt{}$		-	-	-	
MD-Truck	6.40	$\sqrt{}$	ı	$\sqrt{}$	$\sqrt{}$		-	ı	-	
IVID-TTUCK	7.55	$\sqrt{}$	-	-	$\sqrt{}$		-	-	-	
	7.68	$\sqrt{}$	-	$\sqrt{}$	$\sqrt{}$		-	-	-	
	7.79	$\sqrt{}$	-	$\sqrt{}$	$\sqrt{}$		-	-	-	
	8.87	$\sqrt{}$	-	$\sqrt{}$	$\sqrt{}$		-	-	-	
	9.20	$\sqrt{}$	-	$\sqrt{}$	$\sqrt{}$	-	$\sqrt{}$	-	-	
HD-Truck	9.84	$\sqrt{}$	-	$\sqrt{}$			-	ı	-	
	12.74	-	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	-	-	-	
	12.88	$\sqrt{}$	-	$\sqrt{}$		-	$\sqrt{}$	ı	-	
	12.91	$\sqrt{}$	-	$\sqrt{}$			-	-	-	
	13.07	-	$\sqrt{}$	$\sqrt{}$		-	$\sqrt{}$	ı	-	
	15.68	$\sqrt{}$	-	$\sqrt{}$			-	-	MA Mate	

Source: JAMA Material

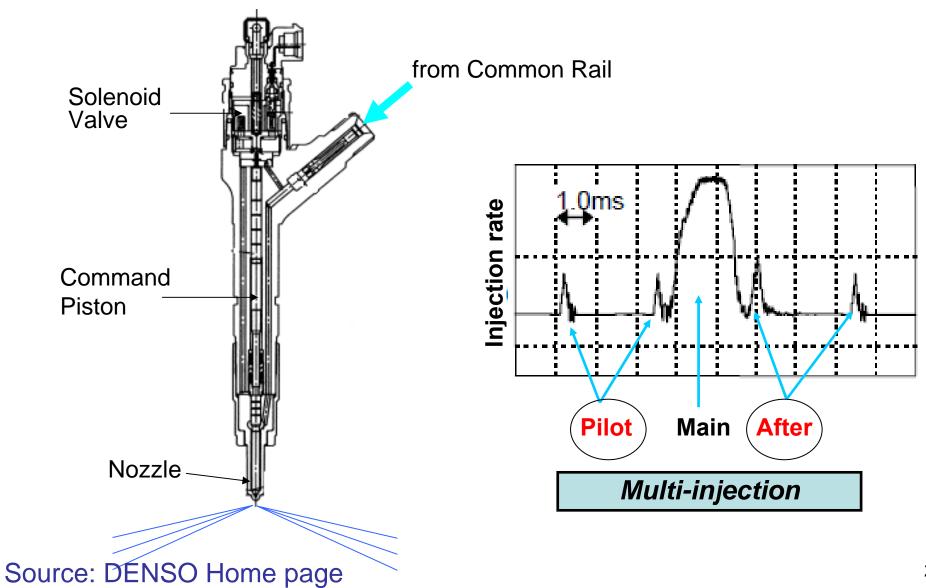

Fuel Injection Pressure Trends

for PM Reduction in the Japanese Market


Common Rail System

Source: Bosch Home page

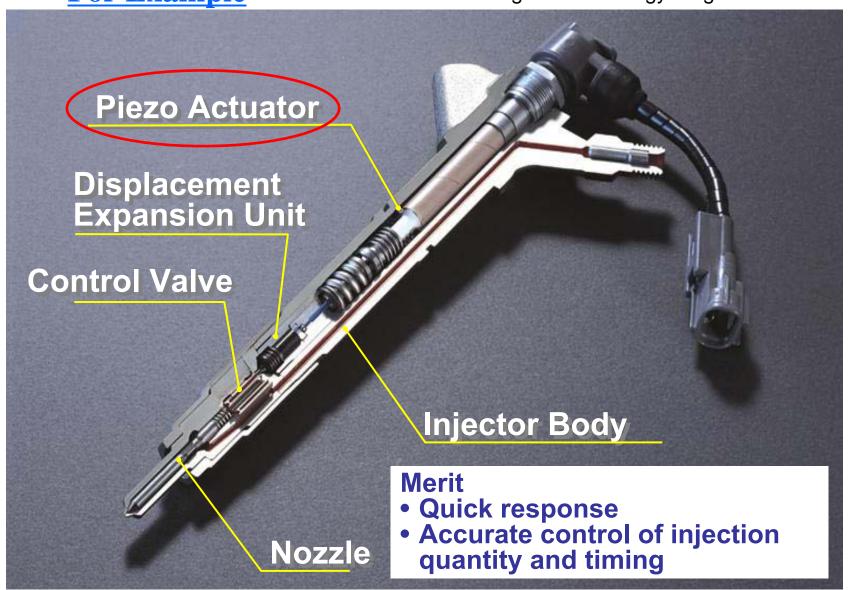
Merits of the Common Rail System (1) for PM Reduction



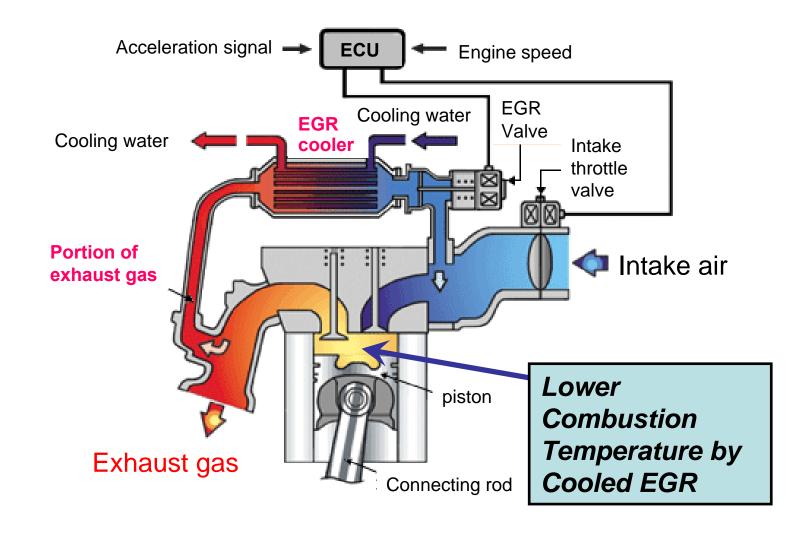
Source: HINO Home page

Merits of the Common Rail System (2)

for NOx Reduction / Regeneration of DPF



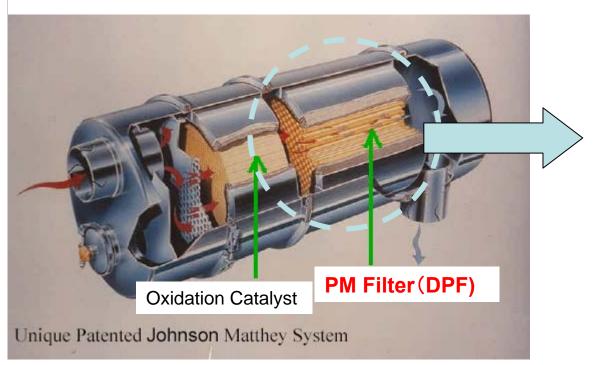
The Newest Piezo Injector


For Example

Source: Engine Technology magazine No.42

Cooled EGR for NOx Reduction

Source: ISUZU Homepage



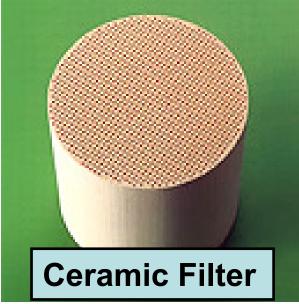
CR-DPF (CRTTM) for PM Reduction

(Continuously Regenerating Diesel Particulate Filter)

 $C + NO_2 \rightarrow CO_2$, NO

For Example

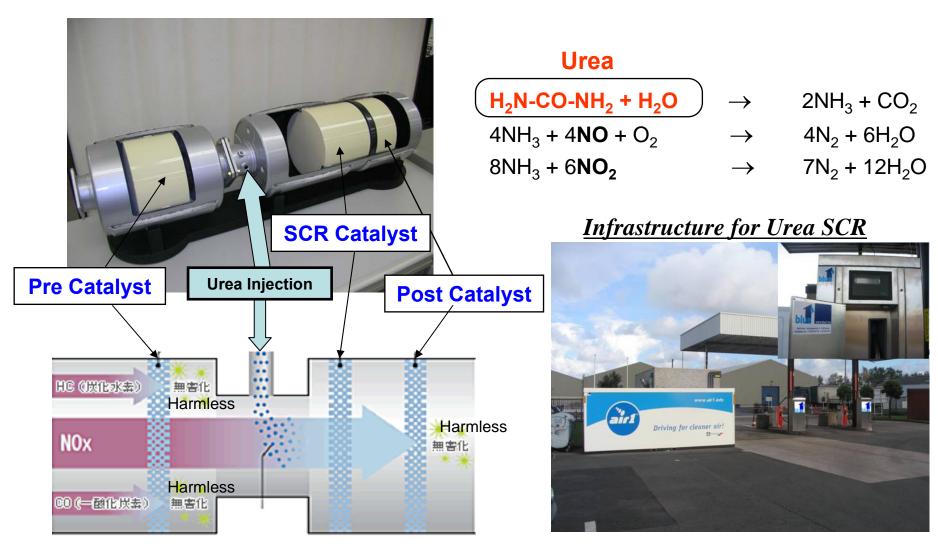



$$NO \rightarrow NO_2$$

$$HC \rightarrow CO_2, H_2O$$

$$CO \rightarrow CO_2$$

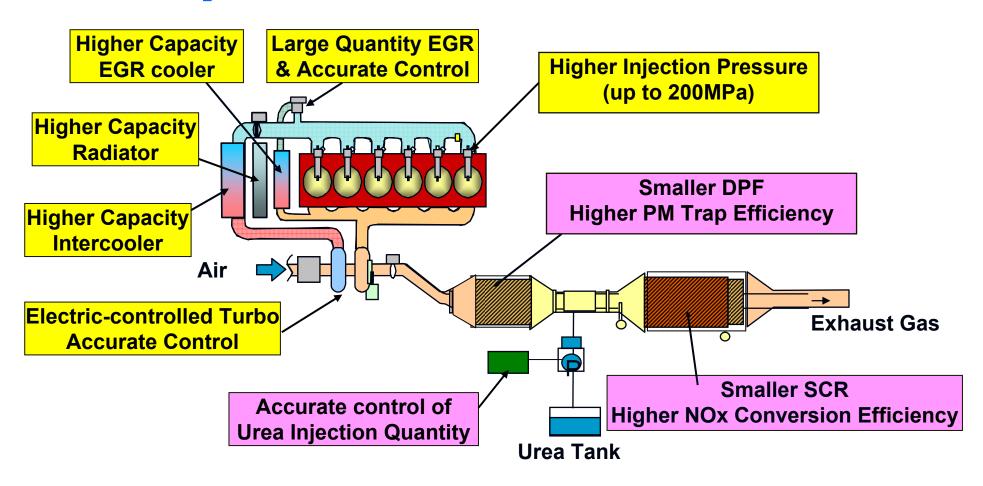
$$SOF \rightarrow CO_2, H_2O$$



Source: NGK

SCR System for NOx Reduction (Selective Catalytic Reduction)

For Example


Source: Mitsubishi FUSO HP

Technology for JP09 *

* :Post New Long Term Exhaust Emission Regulation in Japan (equiv. to Euro V)

For Example

Source: JAMA Material

<u>Contents :</u> JASO Diesel Oil Seminar 2009

Introduction

Engine & Oil Technologies

- Engine Technology
- Functions of Engine Oil & Examples

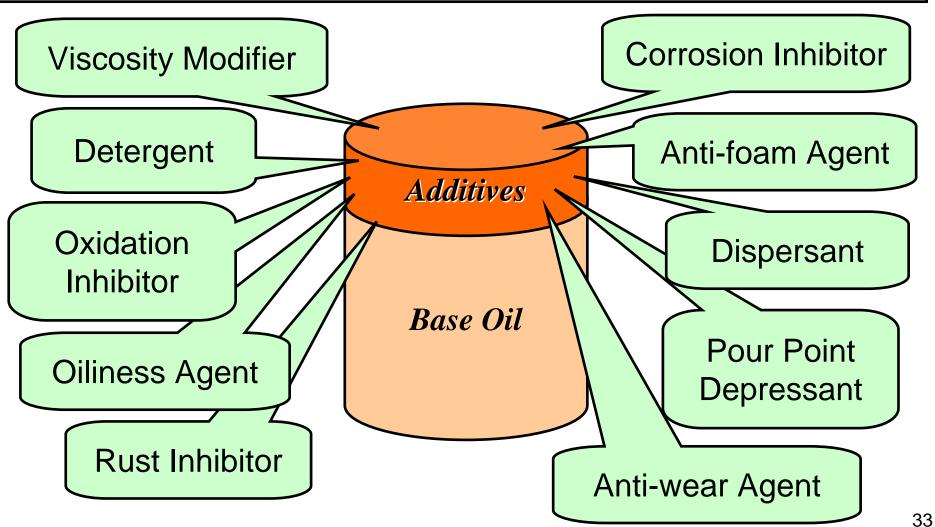
JASO Standards

- JASO DH-1 / DH-2 / DL-1
- JASO On-file System

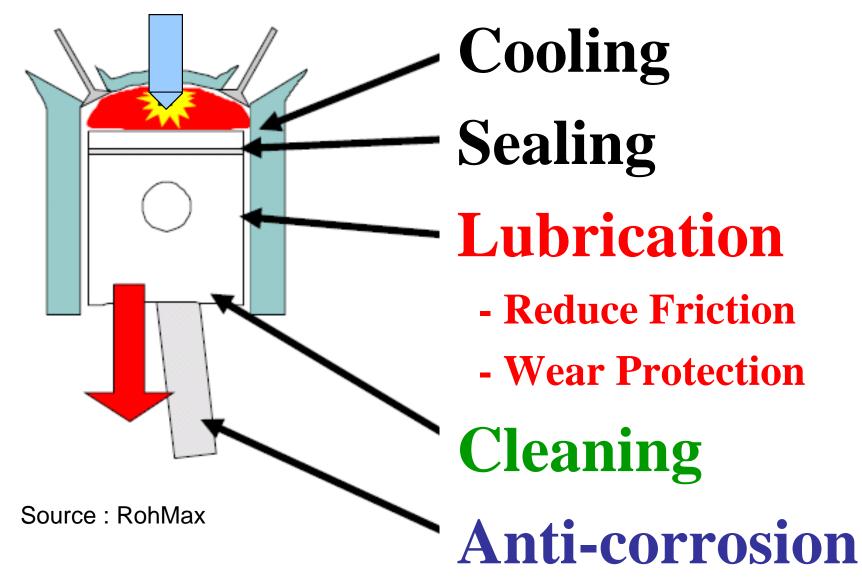
Break 20'

Other Topics

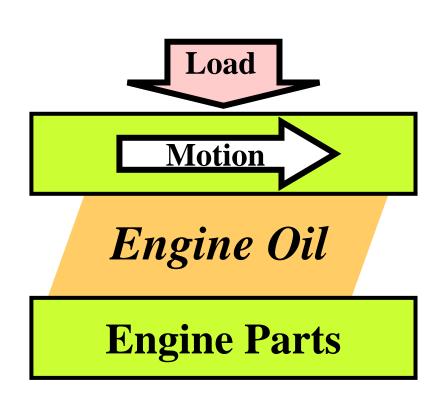
- Biodiesel Fuel Impact on Diesel Engine and the Lubricant
- Japanese OEM Requirements for ATF
- Hydraulic Fluid Standards for Construction Machinery (JCMAS)


<u>Summary</u>

Discussion


Composition of Engine Oils

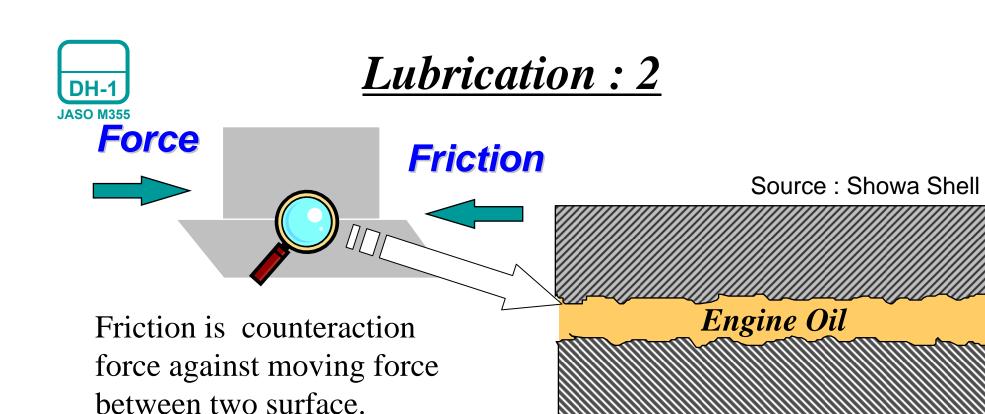
Additives are formulated to ensure engine oil performance. Engine oil works for engine protection.

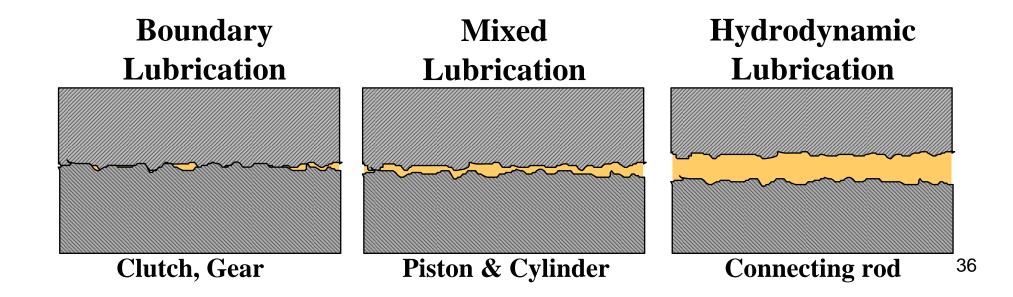


Functions of Engine Oil

Lubrication: 1

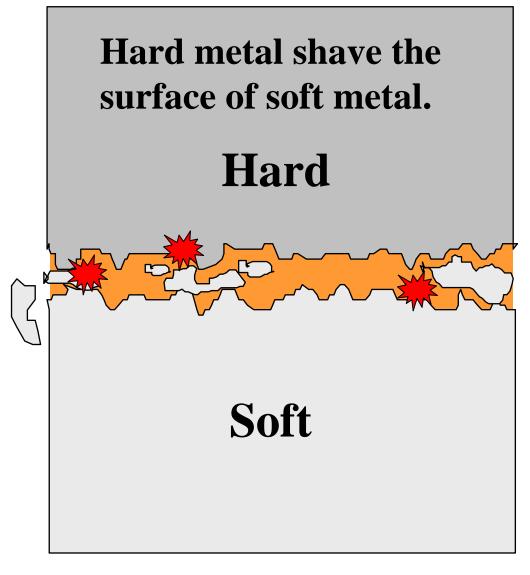
Friction

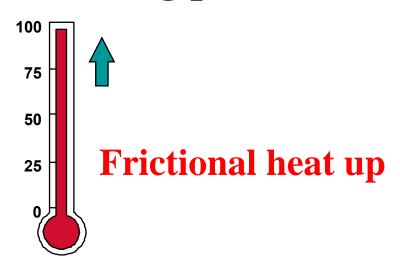

can be reduced when engine parts slide on the oil film


•Wear
can be prevented
when engine parts
are separated by

the oil film

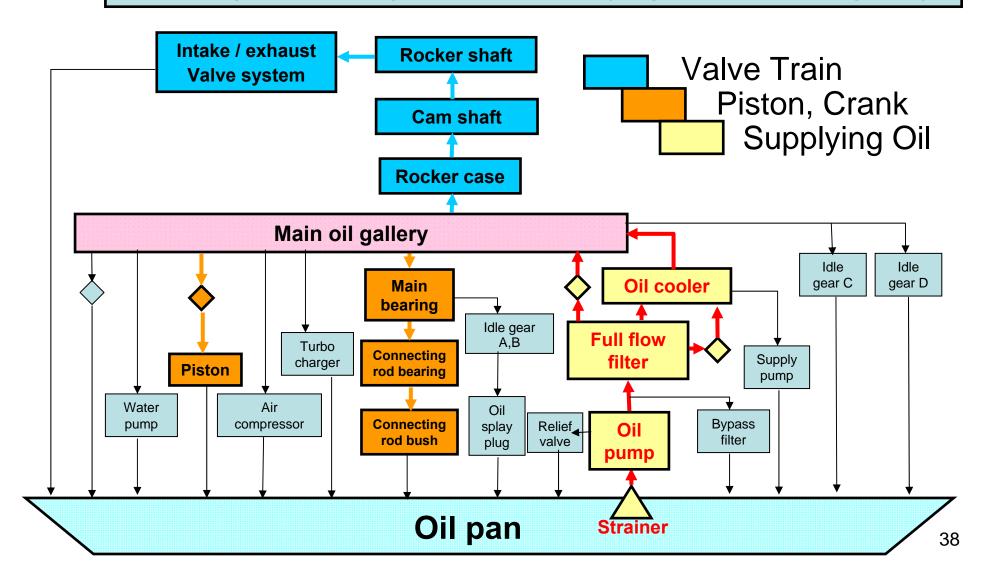
Lubricity is important for Engine Protection


Source: RohMax



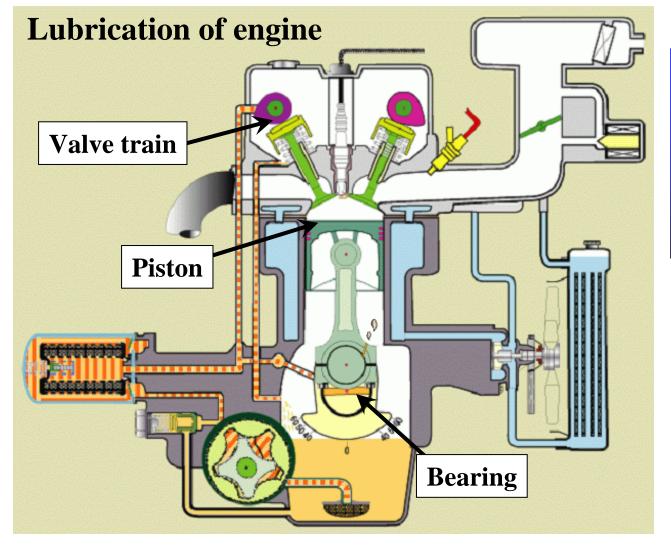
Friction is a cause of wear

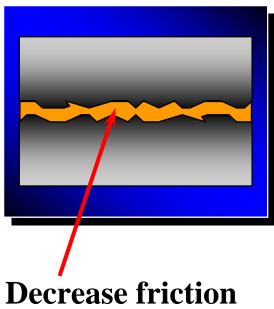
Friction causes the following phenomena

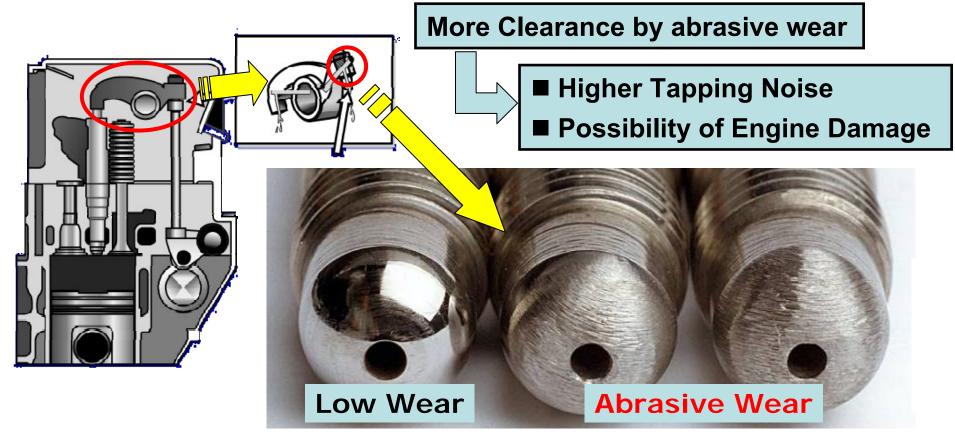

Frictional loss up

= <u>Fuel consumption</u>

Source: Showa Shell




- To protect engine, supplying oil by pumping oil from oil pan
- Filtering and cooling oil before supplying oil to main oil gallery


Engine oil prevents wear of engine parts

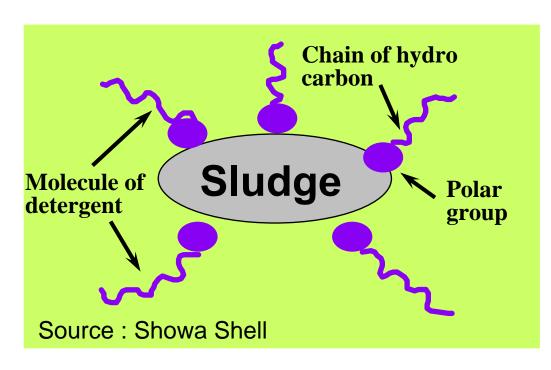
Source: Showa Shell 39

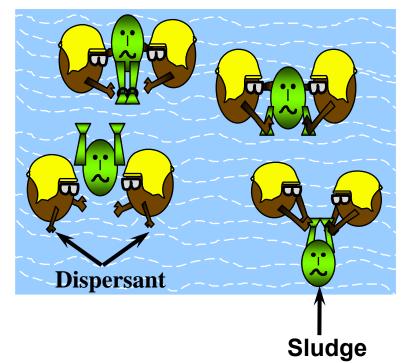
Source : SAE Paper : 2006-01-3439

Poor Anti-Wear Performance

Abrasive wear due to Soot in used oil on adjusting screws

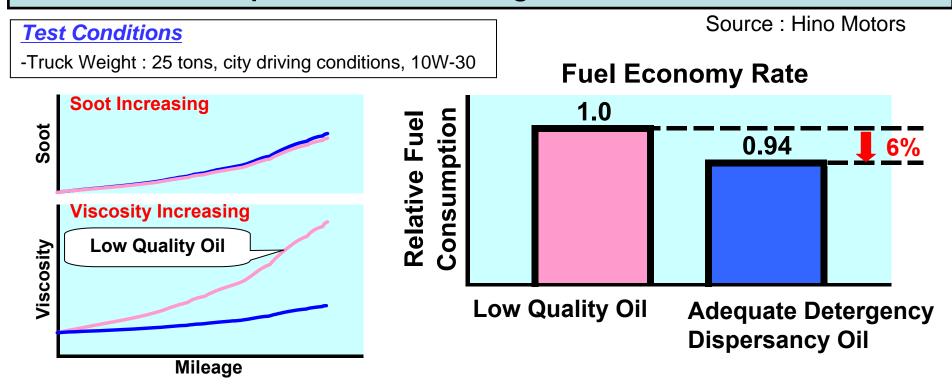
Heat degrades engine oil


Source: Showa Shell


- Detergensy to keep hot parts of engines clean
- Dispersancy to keep cold parts of engines clean

Thermal Stability
and Dispersancy
are important

Engine oil keep inside of engine clean and makes engine operate stable.



Detergent additives accommodate sludge (soot) to oil, and remove from engine.

Dispersant additives prevent sludge (soot) from sticking together.

- ✓ Oils with adequate detergency & dispersancy provide better fuel economy than low quality oils.
- ✓ The effect on fuel economy is dependant on operating conditions such as load, speed, traffic road, engine revolution etc.

Effect on Fuel Economy of Higher Quality Oils

- An example of Japanese dispersancy field tests -

Sludge & Deposit

Oil Consumption, Sticking Rings, Scuffing

Possibility of Engine Damage

Poor Detergency, Dispersancy Performance

Much Sludge & Soot Deposit on Piston Ring Grooves

Anti-corrosion: 1

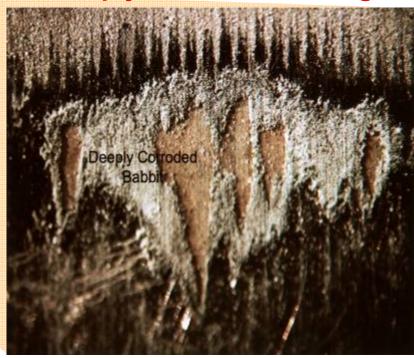
Engine oil prevents corrosion of engine parts from corrosive material caused by oxidation **Acid TBN TBN TBN TBN Prevent from corrosion** Metal

Anti-corrosion: 2

Off Lead (Pb) Scuffing Possibility of Engine Damage

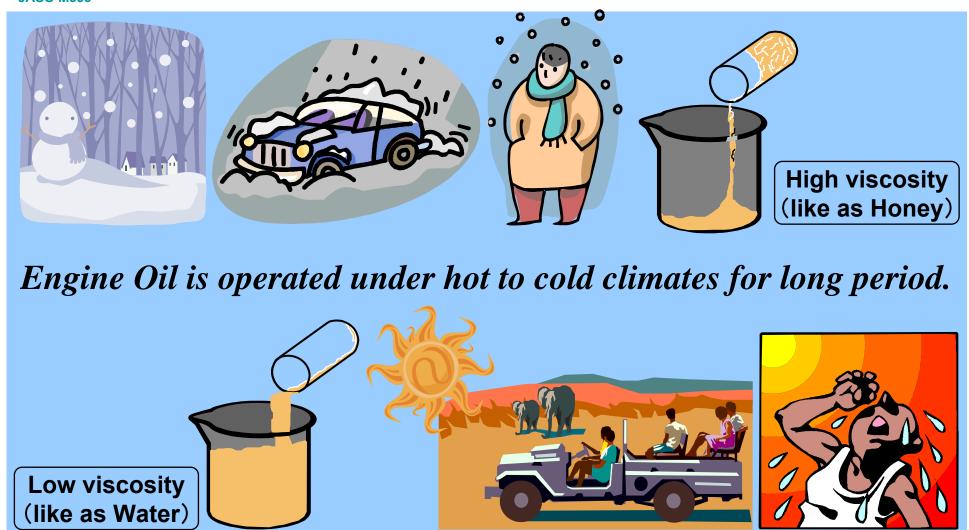
Poor Anti-Corrosion Performance

Acids in Poor Oil are Corrosive to Metals.


Anti-corrosion: 3

Scuffing

Possibility of Engine Damage


Source : SAE Paper : 2006-01-3439

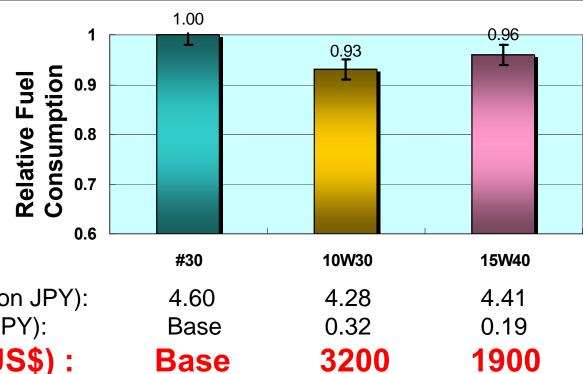
Poor Anti-Corrosion Performance

Bearing Corrosion due to Oil Oxidation in used oil

Operation Conditions and Durability: 1

Engine oil must keep suitable Performance & Viscosity under wide temperature for long time.

Operation Conditions and Durability: 2


- Multi-grade oils provide better fuel economy than mono-grade oils.
- ✓ The effects vary according to operating conditions such as load, speed, traffic road, engine revolution etc.

Test Conditions

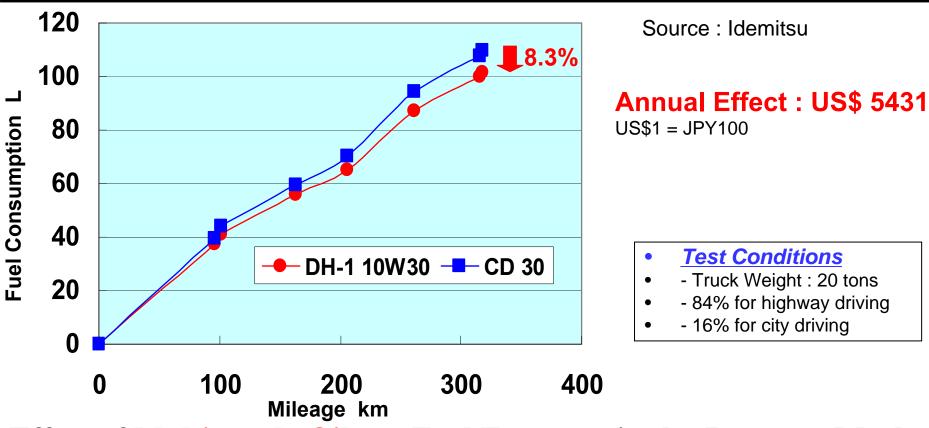
- •- Truck Weight: 20 tons
- •- Mileage: 150k km/year on highways
- •- Fuel Cost: JPY100/liter

Source:

SAE F&L Division, Steering Committee for Asia

Annual Fuel Cost (Million JPY): Annual Effect (Million JPY):

US\$1 = JPY100


Annual Effect (US\$):

Effect of Multi-grade Oils on Fuel Economy in the Japanese Market

Operation Conditions and Durability: 3

- ✓ Multi-grade oils provide better fuel economy than mono-grade oils.
- ✓ The effects vary according to operating conditions such as load, speed, traffic road, engine revolution etc.

Effect of Multi-grade Oils on Fuel Economy in the Japanese Market

Engine oil works for engine protection for long time.

It needs many kind of performances.

We recommend suitable Performance & Viscosity for engine oil.

<u>Contents :</u> JASO Diesel Oil Seminar 2009

Introduction

Engine & Oil Technologies

- Engine Technology
- Functions of Engine Oil & Examples

JASO Standards

- JASO DH-1 / DH-2 / DL-1
- JASO On-file System

Break 20'

Other Topics

- Biodiesel Fuel Impact on Diesel Engine and the Lubricant
- Japanese OEM Requirements for ATF
- Hydraulic Fluid Standards for Construction Machinery (JCMAS)

<u>Summary</u>

Discussion

History of Diesel Engine Oil Specifications

The diesel engine oil specifications have the history of 60 years or more.

Region	Application	1940s	19	50s	1960s 197		70s	198	80s	1990s		s 2000)s	
USA	All Diesel Except	API CA	API CB		Δ.	API C	C		API CE	API CF-4	API CG-4	Al		API CI-4	API CJ-4
	2 Cycle				API CD										
Europe	Heavy-Duty							C	CMC)			AC	EA E	
Luiope	Light-Duty						CCMC SHPD ACEA B				CEA and C				
													J	ASO I	DH-1
	Heavy-Duty										,	JASO			
Japan										DH-2					
	Light-Duty													,	JASO
	Ligiti-Duty														DL-1

Automotive Diesel Engine Oil Standard (JASO M355:2008)

<u>JASO</u>	Application	Fuel Sulfur	Emission Regulations
DH-1	Trucks & Buses *	~ 500ppm ~	Japan NST, Euro II&III
DH-2	Trucks & Buses	<50ppm	Japan NLT **, Euro IV&V **
DL-1	Passenger cars	<50ppm	Japan NLT **, Euro IV&V **

Recommendation should be depended on OEMs.

^{*} Technically applicable to passenger cars

^{**} Required after-treatment devices (DPF, de-NOx catalyst etc)

JASO DH-1 Performance Requirements - JASO M355:2008 -

Test	Items	Test Method	Performance Criteria		
	Piston Deposit Control	Nissan Diesel TD25	TGF ≤ 60.0 %		
		JASO M 336-98	Ring Sticking: All Free		
	Valve Train Wear	Mitsubishi Fuso 4D34T4	Avg ≤ 95.0 μ m		
Engine	vaive Haili vveai	JASO M 354-2005	Max ≤ 210 <i>μ</i> m		
Test	Soot Control	Mack T-8A	≤ 0.2		
		ASTM D5967			
	Oxidation Stability	Sequence. IIIF/IIIG	= API CH-4		
	•	ASTMD5533/D6984			
	Hot Surface Deposit Control	Hot Tube Test	≥ 7.0 at 280°C		
	•	JPI-5S-55-99			
	Anti-foaming	Foaming Tendency	Seq. I & III: 10/0		
	3	JIS K 2518:2003	Seq. II: 50/0		
	Volatility	NOACK	≤ 18.0		
Laboratory		JPI-5S-41-2004	_ 10.0		
Test	Corrosiveness	Cummins HTCBT	= API CH-4		
		ASTM D6594 & D130-94			
	Shear Stability *	HTHS	Stay in Grade		
		ASTM D6278	C13.5 C13.3.0		
	Seal Compatibility	CEC-L-39-T-96	= ACEA E		
Chemical Limit	Base Number	JIS K 2501 or ASTM D4739	≥ 10		
LIIIII		ASTIVI D4733			

^{*} for multi-grade oils (No requirements for mono-grades)

Engine Test - Piston Deposit Control

(JASO M336-98)

Test Engine Nissan Diesel TD25

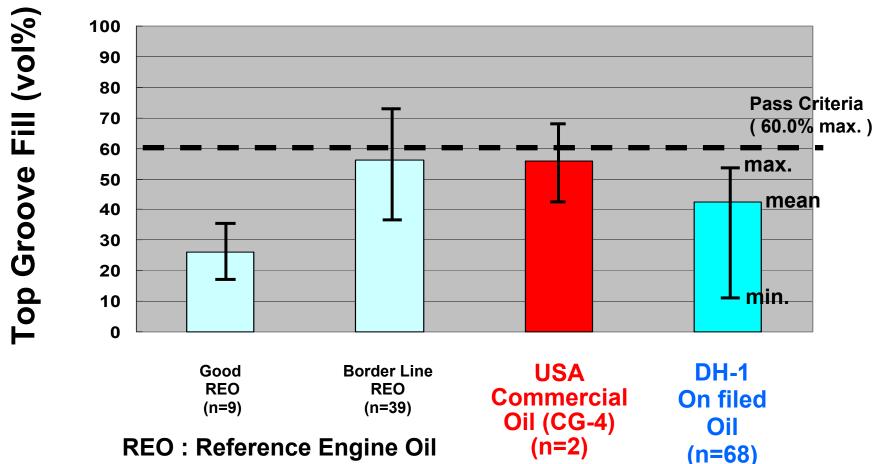
2.5L In-line 4 IDI


Test Condition 4,300rpm Full Load 200 hours

Pass Criteria TGF; 60.0% max

Piston ring sticking; Free

Source: JALOS



Piston Detergency Performance

(JASO M336-98)

- JASO Precision Test Results -

DH-1 oil has much better Detergency Performance than CG-4 for Japanese OEM Engine.

Engine Test - Valve Train Wear

(JASO M354-2005)

Test Engine Mitsubishi Fuso 4D34T4

3.9L In-line 4 DI

Test Condition 3,200rpm Full Load 160 Hours

Pass Criteria Average cam nose wear; 95.0 μm max

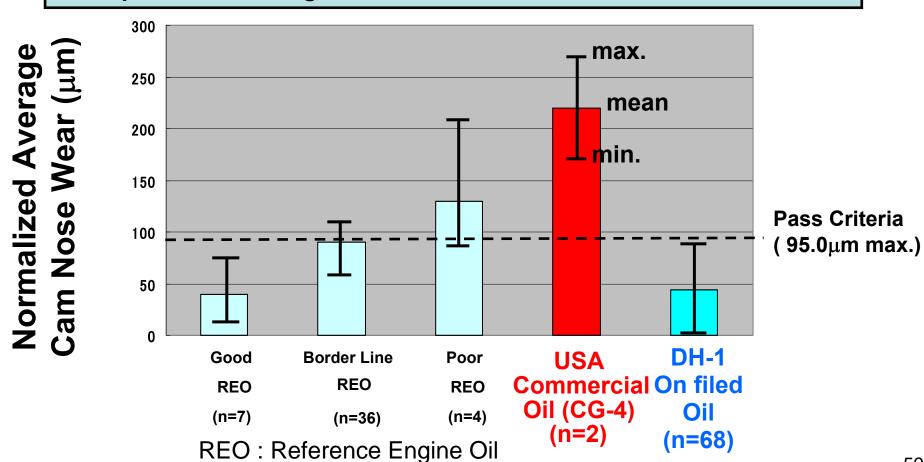
Max cam nose wear; 210 μm max

No Pitting

No Pitting

Pitting

Source: JALOS



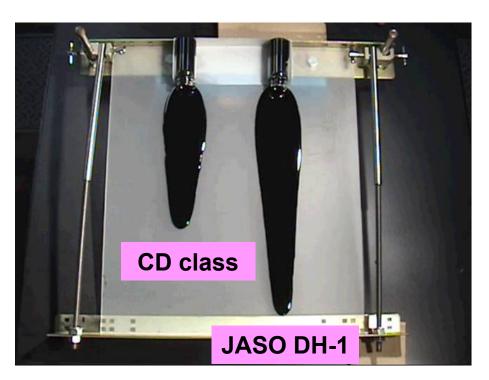
Valve Train Wear Performance

(JASO M 354-2005)

- JASO Precision Test Results -

DH-1 oil has much better Valve Train Wear Performance than CG-4 for Japanese OEM Engine.

Engine Test - Soot Control (ASTM D5967)

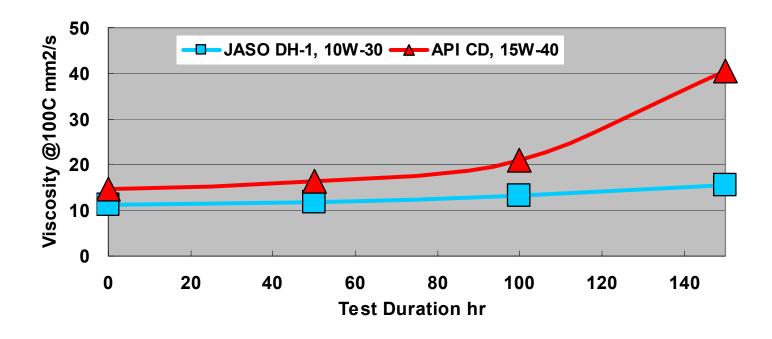

Test Engine Mack T-8A

12.0L DI

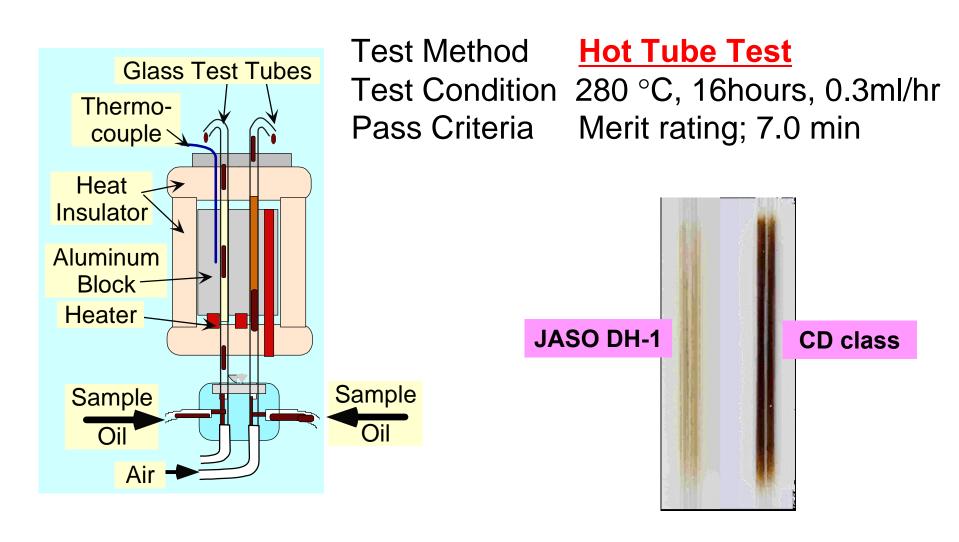
Test Condition 1,800rpm 258kW load 150 hours

Pass Criteria Viscosity Increase(100-150hours); 0.2 mm²/s/h max

Viscosity Increase by Soot (Oils after Engine Test)

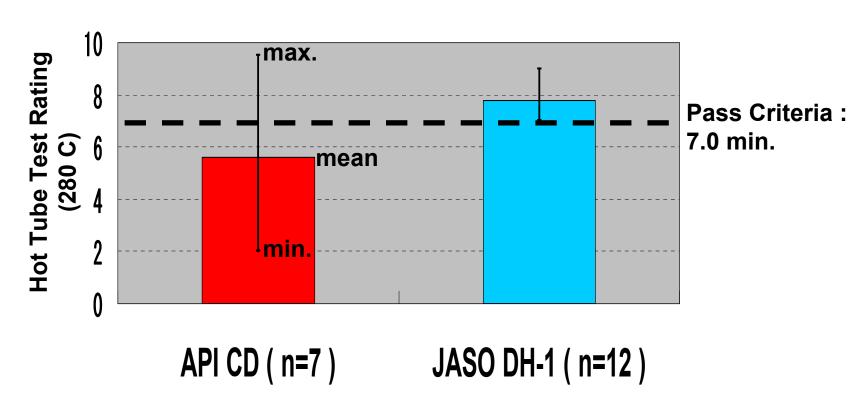


Soot Dispersancy


(Mack T-8A Data)

	Pass Criteria	JASO DH-1	API CD
KV100 Increase mm ² /s/hr	0.2 max.	0.05	0.40

<u>Laboratory Test – Hot Surface Deposit Control</u> (JPI 5S-55-99)

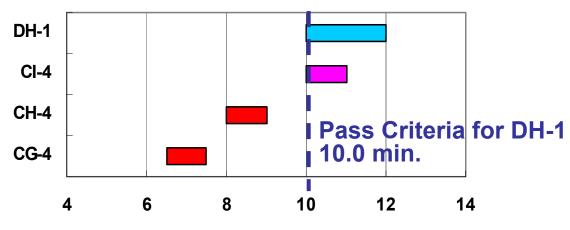


Hot Surface Deposit Control

(Hot Tube Test Results)

 This method was adopted for the hot surface deposit control such as a turbocharger.

The pass criteria based on test results of popular oils in the markets, Japan and USA etc..


Chemical Limit – Base Number (JIS K2501 or ASTM D4739)

Test Method Base Number

Pass Criteria JASO DH-1; 10.0 mgKOH/g min

JASO DH-2; 5.5 mgKOH/g min

JASO DH-1 oils are advantageous to API oils in view of anti-corrosion performance. (Corrosive wear on cylinder liners, bearings, etc.)

Base Number(ASTM D4739) ,mgKOH/g

Automotive Diesel Engine Oil Standard (JASO M355:2005)

JASO	Application	Fuel Sulfur	Emission Regulations		
DH-1	Trucks & Buses *	~ 500ppm ~	Japan NST, Euro II&III		
DH-2	Trucks & Buses	<50ppm	Japan NLT **, Euro IV&V **		
DL-1	Passenger cars	<50ppm	Japan NLT **, Euro IV&V **		

Recommendation should be depended on OEMs.

^{*} Technically applicable to passenger cars

^{**} Required after-treatment devices (DPF, de-NOx catalyst etc)

Difference in Requirement - JASO DH-2 vs. DL-1 -

After-treatment devices require low SAPS

Truck & Bus

Passenger Diesel Vehicle

Need to avoid excessively lowered Sulfated-Ash in keeping appropriate TBN level

- Oil Drain Interval
- Anti-Corrosion Performance

- Need fuel economy
- Higher oxidation stability

<u>DH-2</u>

Sulfated-Ash: 1.0 ± 0.1 %

TBN: 5.5 min

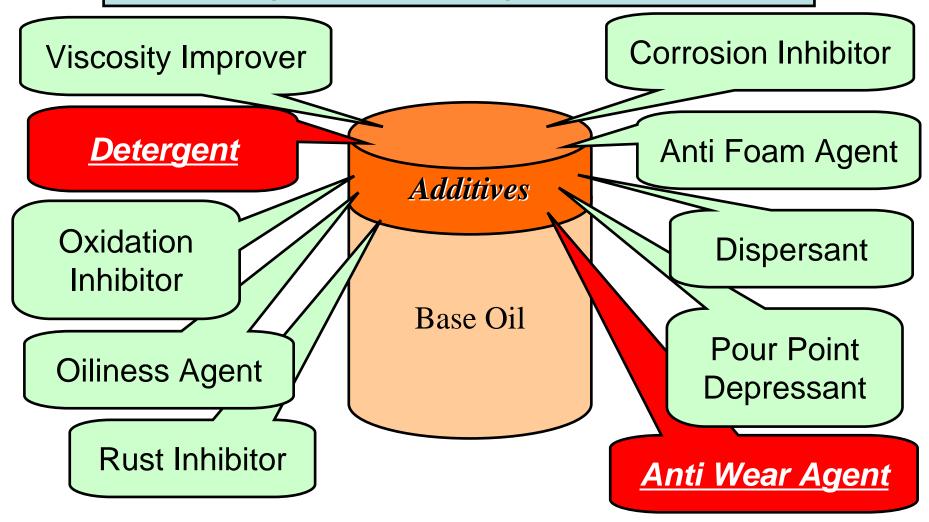
DL-1

Sulfated-Ash: 0.6 % max

Fuel Economy: ACEA B1

Oxidation Stability: GF-3

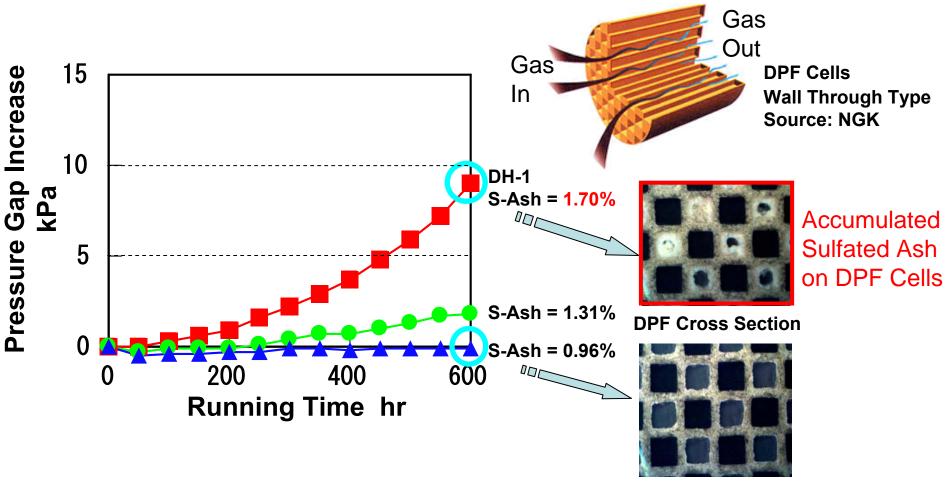
JASO DH-2/DL-1 specification


			JASO		
		DH-1	DH-2	DL-1	
	Nissan Diesel TD25	Þ	Po	Æ	Detergency
Engine	Mitsubishi Fuso 4D34T4	Þ	Æ	Æ	Valve train wear / Soot handling
Tests	MACK T-8 / 8E	Þ	Æ	Æ	Soot handling / wear
16212	SEQ.IIIE / IIIF	Æ	Æ	₽*	Oxidation / wear
	MB M111	-	-	B	Fuel Economy
	SAE J300	-	-	XW-20,XW-30	Viscosity grade
	CEC L-36	Æ	Æ	Æ	Viscosity(HTHS)
Bench	ASTM D892/D6082	Æ	Æ	Æ	Foaming
Tests	CEC L-39	Æ	Ð	Æ	Oil/elastomer compatibility
16212	CEC L-40	Æ	Æ	Æ	Noack volatility
	JPI 5S-55	Æ	Ð	Æ	Hot surface deposit control
	ASTM D5968 / D6594	Æ	Ð	Æ	Corrosion(HTCBT/CBT)
	ASTM D874	-	1.0±0.1	0.6 max	Sulfated ash, mass%
	JIS K2501	10.0 min	5.5 min	-	Pasa numbar maKOH/a
Chemical	ASTM D4739	10.0 11111	-	-	Base number, mgKOH/g
Limits	ASTM D2622 / D5185	_	0.5 max	0.5 max	Sulfur, mass%
	ASTM D5185	-	0.12 max	0.10 max	Phosphorus, mass%
	ASTM D6443	-	150 max	150 max	Chlorine, ppm

^{*} Severe passing criteria

Composition of Engine Oils

Additives are formulated to ensure engine oil performance Engine oil works for engine protection.



Additives which leaves Ash after combustion

DPF Pressure Gap Increase

When sulfated ash contents were higher, the DPF pressure gap increased gradually.

DPF Pressure Gap between Inlet and Outlet by Exhaust Gas

Source : JCAP Official Report PEC-2003JC-01

Summary for JASO DH-1, DH-2 & DL-1

JASO has 3 specifications for Diesel Engine Oils

- •DH-1; for high sulfur fuel region
- •DH-2; for low sulfur fuel (<50 ppm) region with DPF for trucks and buses
- •DL-1; for low sulfur fuel (<50 ppm) region with DPF for passenger cars
- Development cost of JASO DEO are less expensive than API/ACEA.
- JASO DEO specifications are the most suitable oils for Japanese trucks, buses and light duty diesel vehicle & passenger cars
- JAMA expects the current specifications live on for many years... beyond 2010.

JASO DH-1 is currently the most suitable engine oil for Japanese diesel vehicles in your country.

<u>Contents :</u> JASO Diesel Oil Seminar 2009

Introduction

Engine & Oil Technologies

- Engine Technology
- Functions of Engine Oil & Examples

JASO Standards

- JASO DH-1 / DH-2 / DL-1
- JASO On-file System

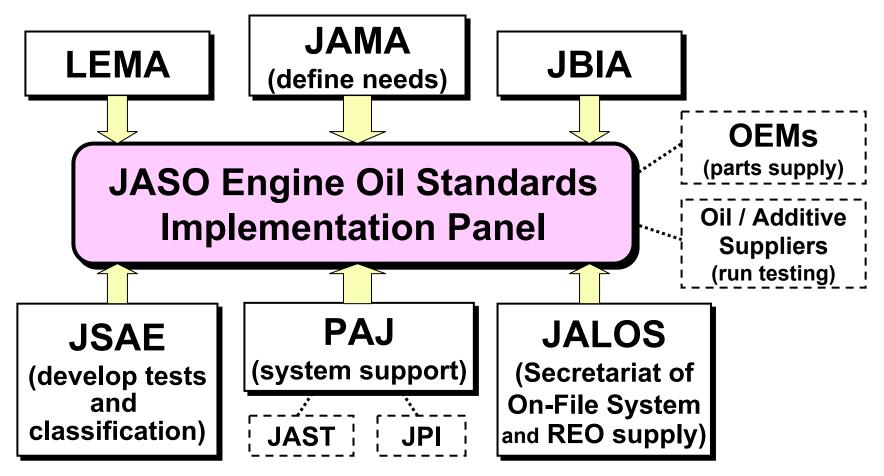
Break 20'

Other Topics

- Biodiesel Fuel Impact on Diesel Engine and the Lubricant
- Japanese OEM Requirements for ATF
- Hydraulic Fluid Standards for Construction Machinery (JCMAS)

<u>Summary</u>

Discussion



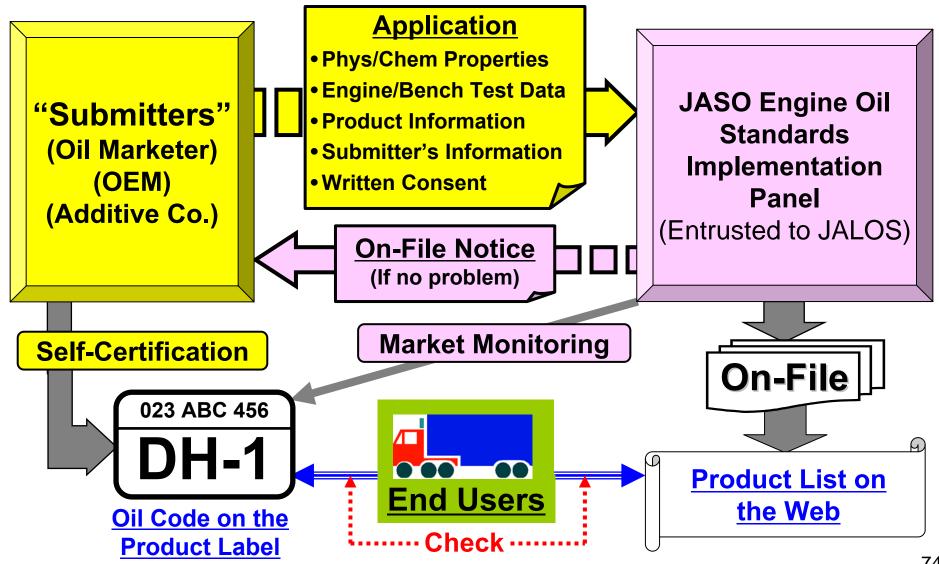
What is JASO On-file System?

- A quality management system for JASO engine oil standards
- Operated by the "JASO Engine Oil Standards Implementation Panel (JEOSIP)" composed by the relevant industrial organizations with engine oils in Japan.
- Economical system compared with EOLCS (US) and EELQMS (EU) with reasonable effectiveness
- Aiming to protect end-users and lubricant suppliers from fake oils

Organizations Relative to the System

LEMA: Land Engine Manufacturers Association

JBIA: Japan Boating Industry Association

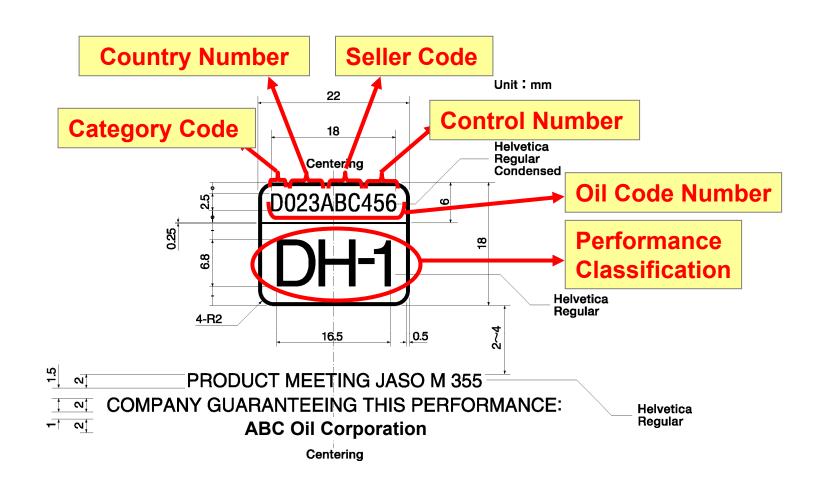

JAMA : Japanese Automobile Manufacturers Association

PAJ: Petroleum Association of Japan JPI: Japanese Petroleum Institute

JAST: Japanese Society of Tribologists

Outline of the On-File Process

74



Items to be Submitted for the Filing System

Items	2Т	4T	Diesel			
Administrative Information	- Company Name - Contact Person - Contact Address - Product Name - Viscosity Grade - Performance Grade - Oil Code - Letter of Consent					
Engine Test Results	- Lubricity - Detergency - Smoke - Blocking	- TD25 - Mack T-8A - 4D34T4 - Seq. IIIF				
Rig Test Results		- Wet Clutch Friction	- Corrosion Test - Hot Tube Test			
Phys./Chem. Properties	Phys. PropertiesElemental AnalysisIR Chart	- Phys. Properties - Elemental Analysis - IR Chart	Phys. PropertiesElemental AnalysisIR Chart			
Initial Filing Fee	JPY 40,000	JPY 40,000	JPY 40,000			
Maintenance Fee	NA	NA	JPY 30 x Sales Vol. (KL)			
Market Monitoring	Yes	Yes	Yes			

Labeling & Oil Code (Example)

An Example of Logo Mark

JEOSIP Web Site (http://jalos.or.jp/)

Copyright(c) 1999-2008 Japan Lubricating Oil Society. All Rights Reserved.

JEOSIP Web Site (Example)

JASO Engine Oil Standards Implementation Panel

[Filed Diesel Engine Oil List]

	Brand Name	Submitter Name	Oil Code	Classification	Viscosity Grade
٦/	Super Diesel HH	ABC Oil Corporation	D023ABC456	DH-1	15W40
2	Super Diesel XT	ABC Oil Corporation	D023ABC457	DH-2	10W30
3	Ultra Diesel Oil	Ultra Lube Oil Co., Ltd.	D081ULC004	DH 1	15W40

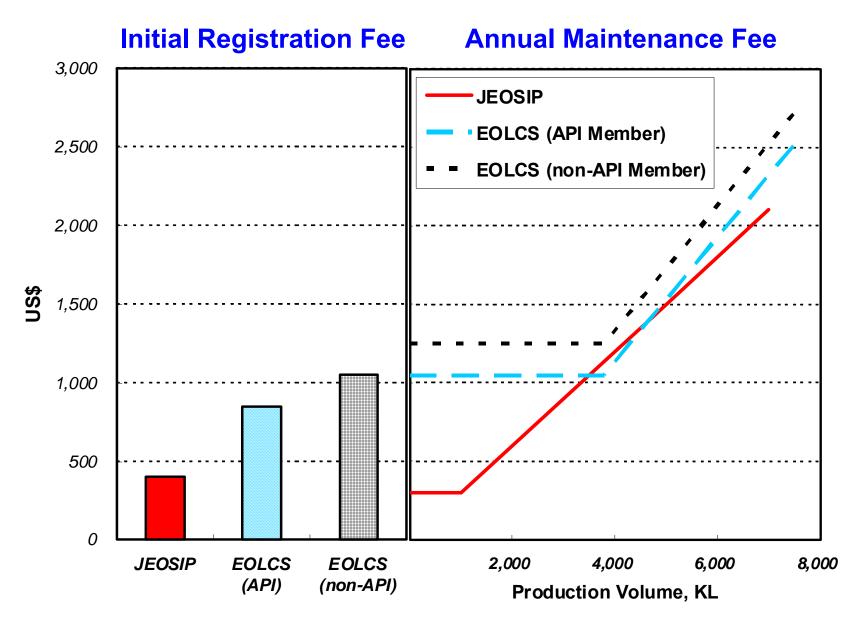
End-users can check if the products labeled with JASO symbol mark are listed in the Engine Oil Lists published on the JEOSIP's Website

JASO On-filed Oils by Year (2000 to 2007)

JASO DH-2 / DL-1 oils for DPF compatibility going up since 2005 in Japan

Advantages of the On-File System

- Rather simple and economical system with reasonable effectiveness
- Easy to understand for end users on the selection of suitable diesel engine oil
- Oil marketers will be protected from malignant suppliers through market monitoring by the QM system


Expense of Engine Tests for Approval

ACEA & API are three times as expensive to run tests.

		ACEA		А	PI	JASO
	USD(\$)	E7	E9	CI-4 plus	CJ-4	DH-1&2
Nissan Diesel TD25	45,000					#
Mitsubishi Fuso 4D34T4	49,000					#
OM501LA	131,000	#	#			
OM602A / OM646LA	52,000	#	#			
Cummins ISM	94,000	#	#	#	#	
Cummins ISB	74,000				#	
MACK T-12	118,000	#	#	#	#	
MACK T-11	75,000		#	#	#	
MACK T-8A	39,000					#
MACK T-8E	79,000	#		#		
Cat 1N	28,000			#	#	
Cat 1R	67,000			#		
Cat C-13	163,000				#	
RFWT	13,000			#	#	
EOAT Aeration Navistar	8,000			#	#	
SEQ IIIE / IIIF /IIIG	35,000			#	#	#
Total	USD(\$)	474,000	470,000	517,000	608,000	168,000
	%	282	278	308	362	100

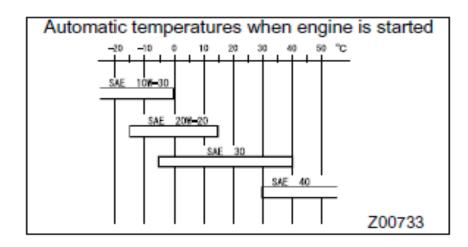
Cost Comparison of QM Systems

On-File Continuation

- The on-file status is renewed annually.
- "On-file Continuation Fee":
 - must be paid depending on the amount of volume sold by each application submitter (not by each product).
 - is to be used for market monitoring, etc.

Market Monitoring

- "Market Monitoring Panel" conducts market survey on:
 - Physical & chemical property measurements
 - Bench & engine tests
- Oils not meeting DH-1 requirements / registered data is to be requested for improvement.



Japanese OEM's Recommendation (Owner's Manual Examples)

Japanese OEM's recommendation (Owner's Manual Example)

Mitsubishi Fuso Heavy Duty Truck for Thailand

replacement

1 Engine oil

Performance, life, and startability of the engine depend to a large degree on the engine oil. Always use oil of the specified type and viscosity.

Oils and fluids – check and

	At the time of preoperational check			
Replacement intervals	Every 16,000 km			

Recommended oil:
Engine oil
API classification CD, CD/SF, CE, CE/SF, CF-4 or
JASO classification DH-1
SAE40, 30, 20W-20, 10W-30

- The first engine oil replacement during the runin period should be performed at the first 5,000 km.
- When the engine is used at high speeds and high loads, replace the engine oil earlier than normal

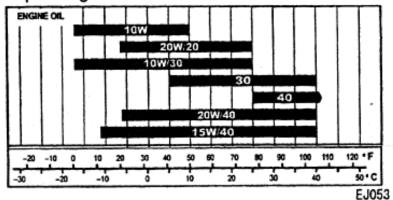
Japanese OEM's recommendation

(Owner's Manual Example)

SERVICE DATA

Recommended Lubricants

Lubricant	Specifications	Remarks
Engine oil	Extra Multi, Special Multi (genuine) alternatively, JASO: DH-1 API: CF-4, CH-4 ACEA: E3 or higher (Sulfated ash: more than 1.0%)	For further details, refer to the recom- mended SAE viscosity chart.
NOTE:	nuine engine oll or equiv-	


- Use NISSAN DIESEL genuine engine oil or equivalents. DH-1 is the Specification established by Japanese Automobile Standard Organization.
- API CG-4 is not recommendable due to its high dispersive quality.
- If the sulphur content in the fuel exceeds 0.05% by weight, the oil change interval must be halved.

Nissan diesel

for Heavy Duty Truck

Recommended SAE Viscosity Number

Use oil having the proper viscosity beforehand which meets temperatures you forecast for areas where you are planning to drive.

Japanese OEM's recommendation

(Owner's Manual Example)

Hino Motors for Heavy Duty Truck

 $\sqrt{\mbox{ JASO DH-1 or DH-2}}$ depending on the Emissions Regulations & the Fuel Sulfur Content are recommended.

 $\sqrt{\text{API CD \& CE Grades are deleted from the Owner's Manual in the future.}}$

PERIODIC LUBRICATION

Perform the following inspections at the indicated mileages and time periods for both new vehicle and after overhaul.

Items	Lubricants		Capacities L {gal (US), gal (UK)}	Grades	Vis Antic	cosit ipate	ies T d Be	empe fore l	eratur Vext (re Ra Oil C	ange Change
		Oil pan	Approx. 28.0 {7.40, 6.16}	JASO: DH-1, DH-2*1 API:CD*2, CE*2, CF,	<u>-40 -22</u> -40 -30	-20	-10 S		0 20 N-50	30	104 °F 40 °C
Engine	Engine oil	Oil filter	6.0 {1.59, 1.32}	to the EUNO4/EPAO/ regula- tion countries, and use ultra- low sulfur fuel only. *2:These oil grades do not com- ply with the latest exhaust emission (EURO4/EPA07 etc.) regulations, and HINO cannot recommend the use of these oil grades.					SAE 3	80 E 40	20701ZG

<u>Contents :</u> JASO Diesel Oil Seminar 2009

Introduction

Engine & Oil Technologies

- Engine Technology
- Functions of Engine Oil & Examples

JASO Standards

- JASO DH-1 / DH-2 / DL-1
- JASO On-file System

Break 20'

Other Topics

- Biodiesel Fuel Impact on Diesel Engine and the Lubricant
- Japanese OEM Requirements for ATF
- Hydraulic Fluid Standards for Construction Machinery (JCMAS)

<u>Summary</u>

Discussion

Biodiesel is a Global Phenomena

Trend of FAME-blended diesel fuel

Country	FAME Contents (Max)	FAME Major Source	Remarks
Germany	B7	Rape seed	B6.25 mandate in 2009, Severe oxidation stability
France	B7	Rape seed	B6.25 mandate in 2009, Severe oxidation stability
Other Europe	B5	Rape seed	
U.S.A	B5	Soy	B2 mandate, Minesota plus other 3 states
Indonesia	Investigating	Palm	B1 to B5 are sold at the limited service station
Thailand	B5	Palm	B2 mandate, B5 is sold on the market
Vietnam	B5	Palm, Catfish	50K tons of B5 sales is planned in 2010
Japan	B5	Any, Cooking oil	No actual sales
Malaysia	B5	Palm	
India	B5	Jatropha	
Australia	B5	Tallow	
New Zealand	B5	Tallow	

How Much Biodiesel Do the HD OEMs Allow? Japanese OEMs

- Japanese OEMs allow up to B5
 - As far as it meets the Japanese B5 regulation
 - FAME blend stock is also required to comply with B100 guideline spec.
 - WWFC B100 Guidelines (to be published soon)
 - Oxidation stability is the most important property
 - Induction period of minimum
 10 hours is required.

Regulation of FAME Blended Fuel in Japan

Items	Level
Sulfur	10 ppm max
Cetane Index	45 min
T90	360 °Cmax
FAME content	5 mass% max
Methanol	0.01 mass% max
Trigriceride	0.01 mass% max
TAN	0.13 mgKOH/g max
Individual Organic Acid	30 ppm max *
Oxidation Stability (Acid)	0.12 mgKOH/g as growth

^{*} Total of Formic, Acetic and Propionic acid

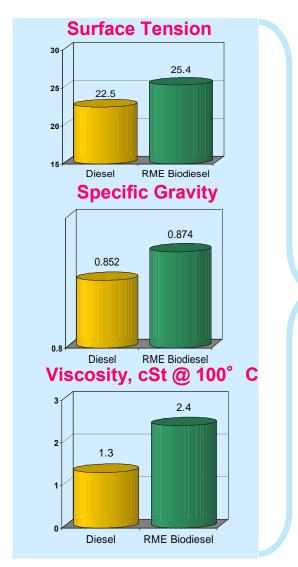
OEM Biodiesel Concerns and Unknowns

Fuel System

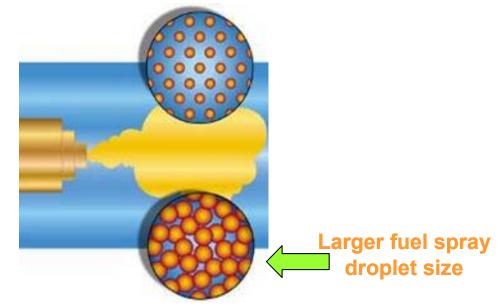
- Injector deposits
- Fuel filter plugging
- Injection pump durability
- Materials incompatibility
- Fuel Instability
- Low temperature handling
- May reduce detergency and anti-foam properties of fuel additive packages

Emissions Systems

- Impact on after-treatment devices and sensors
- Impact on NOx emissions
- Lower BTU content/fuel economy


Lubricant Performance

Fuel dilution
Corrosion
Viscosity increase
Oxidation
Piston Deposits
Sludge Deposits
Wear



Crankcase Fuel Dilution With Biodiesel

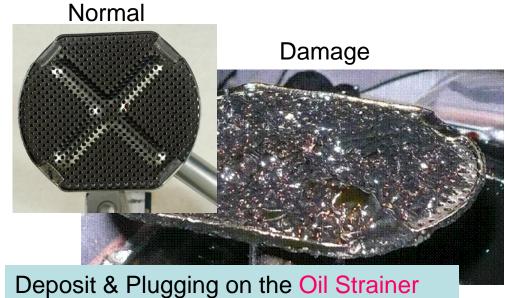
Properties of Biodiesel lead to higher fuel dilution levels than mineral diesel

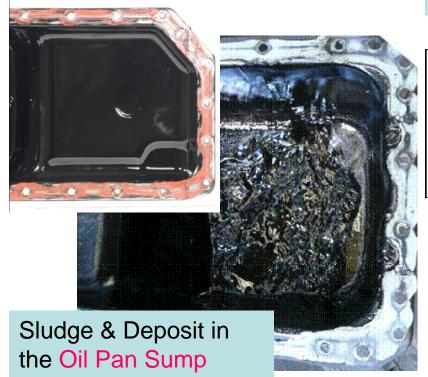
Diesel – Normal droplet size

Biodiesel – Increased droplet size

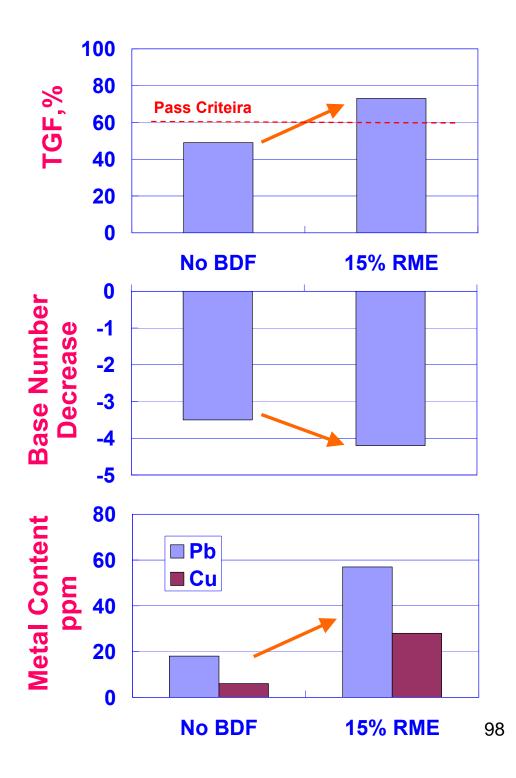
Crankcase Fuel Dilution With Biodiesel

Higher and narrower boiling range of biodiesel makes it more persistent once it enters the crankcase


Some OEMs have reported 15 to 20% fuel dilution at oil drain


Some OEMs reduce drain intervals when biodiesel is used

Example of engine failure from the use of FAME (B100, Used cooking oil ME)

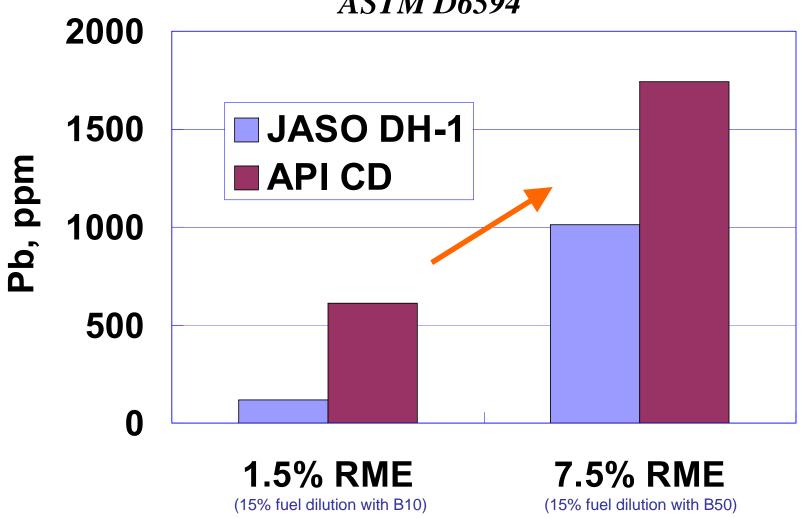

Lubrication Aspects

Nissan Diesel TD25
Detergency Tests
JASO M336-98

Test Oil; JASO DH-2, 10W30

No BDF = Test Oil
15% RME = 15% neat RME was
blended in the Test Oil

Source: Japan Auto Oil Program



<u>Lubrication Aspects – Pb Corrosion</u>

Cummins HTCBT Corrosion Test

Source : Japan Auto Oil Program (JATOP)

<u>Summary</u>

- Engine Builders and Fuel System Suppliers currently restrict the use of biodiesel during warranty periods
 - Japanese OEMs allow up to B5
- Biodiesel properties make it more likely to enter and stay in the crankcase as fuel dilution
- Oxidation of biodiesel in the crankcase oil leads to higher levels of deposits and lead corrosion
- Use of biodiesel can lead to lubrication issues
 - High and persistent fuel dilution
 - Oil oxidation and bearing corrosion
 - Piston deposits
- JASO DH-1 oil gave better oxidation stability and corrosion protection than API CD oil on the study of Japan Auto Oil Program
 - JASO specification requires Oxidation Stability (SEQ.IIIF/IIIG)
 - JASO specification requires 10 minimum of Base Number
 - JASO specification requires Corrosion Protection (HTCBT)
 - It's important to keep adequate Oil Drain Interval even JASO DH-1 oil
- Further studies are needed to determine safe and appropriate biodiesel use levels

<u>Contents :</u> JASO Diesel Oil Seminar 2009

Introduction

Engine & Oil Technologies

- Engine Technology
- Functions of Engine Oil & Examples

JASO Standards

- JASO DH-1 / DH-2 / DL-1
- JASO On-file System

Break 20'

Other Topics

- Biodiesel Fuel Impact on Diesel Engine and the Lubricant
- Japanese OEM Requirements for ATF
- Hydraulic Fluid Standards for Construction Machinery (JCMAS)

<u>Summary</u>

Discussion

Japanese OEM Requirements for ATF

JAMA

JAPAN AUTOMOBILE MANUFACTURERS ASSOCIATION, INC.

Yasushi Ando

ATF WG Leader in JAMA TOYOTA MOTOR CORPORATION

Japanese OEM Requirements for ATF

- 1) Background
- 2) ATF for Japanese Cars
- 3) JAMA's Requirement for ATF
- 4) Summary

Background

1. There are many brand-new Japanese cars equipped with the newest **AT** (**A**utomatic **T**ransmission) in every place of Asian market.

Lexus 8 speed AT, One of the newest ATs

Background

- 2.Those cars need higher quality ATF to make full use of its performance. (i.e. torque converter lock up clutch continuous slipping control)
- 3. Therefore, **JAMA** (**J**apan **A**utomobile **M**anufacturers **A**ssociation) requires high performance ATF standard.

Japanese OEM Requirements for ATF

- 1) Background
- 2) ATF for Japanese Cars
- 3) JAMA's Requirement for ATF
- 4) Summary

ATF for Japanese Cars

Many Car Manufactures in Japan

TOYOTA, NISSAN, HONDA,
MAZDA, MITSUBISHI, SUZUKI,
DAIHATSU, SUBARU, , ,
HINO, ISUZU, MITSUBISHI FUSO,
NISSAN DIEDEL

All of these are the member companies of <u>JAMA</u>.

Japan Automobile Manufacturers
Association Inc.

ATF for Japanese Cars

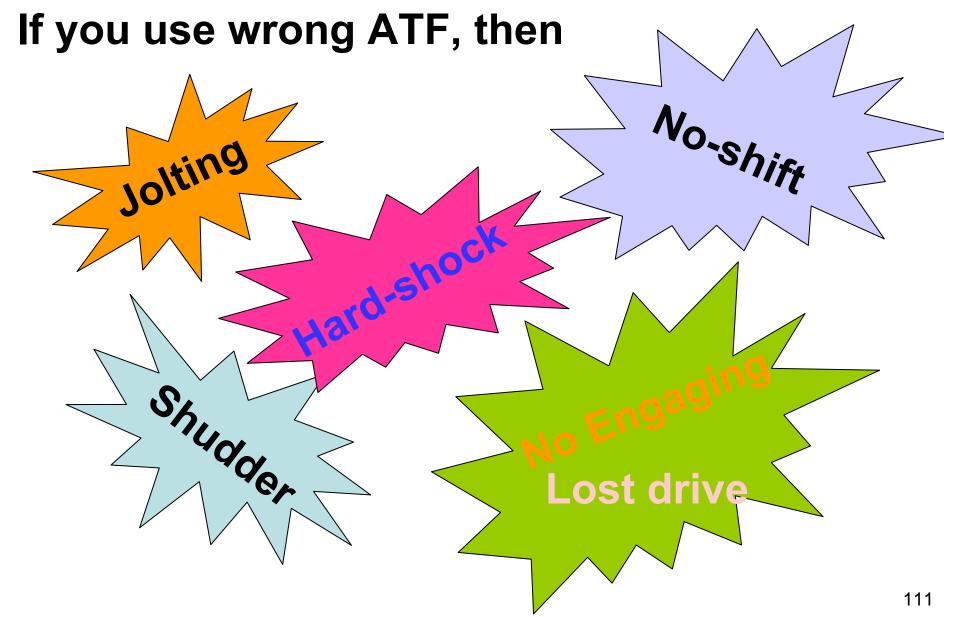
Each car maker has its own genuine parts ATF and the in-house ATF specifications.

```
TOYOTA
                   DII, TIV, WS
              Matic-D, Matic-S
 NISSAN
                      ATF-Z1
 HONDA
 MAZDA
                       M5
                  ATF-2, ATF-SPⅢ
MITSUBISHI
                      D3-SP
DAIHATSU
 SUBARU
                        F6
```

(**Blue letter** shows the newest ATF)

What is ATF?

Why so many genuine parts ATFs?



Do you have to prepare and stock so many kinds of ATFs for Japanese cars?

Yes!

It is best for Japanese car to use the genuine parts ATF to make full use of its performance.

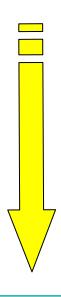
What is ATF?

ATF is almost something like blood!

If you lose your blood, you must die. If you are injected a different type of blood into your body, you maybe die.

AT is the same!

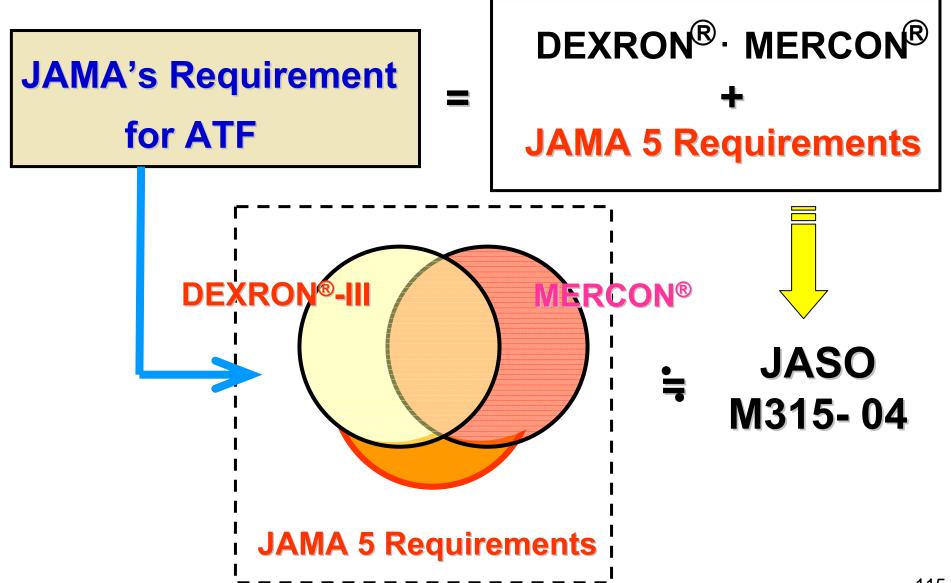
Please choose a correct type of ATF, or you will kill your car.


Japanese OEM Requirements for ATF

- 1) Background
- 2) ATF for Japanese Cars
- 3) JAMA's Requirement for ATF
- 4) Summary

JAMA's Requirement for ATF

The Technical Advantage of Japanese ATs



- Low Fuel ConsumptionHigh Efficiency
- Good Shift Quality
- High Reliability

These advanced performances demand high performance ATFs

JAMA's Requirement for ATF, in Other Words

JAMA's Requirements for ATF & Test Methods

JAMA 5 Requirements

	Item	Purpose	Test Method
1	Anti-Shudder Durability	To prevent shudder for life when TCCS is at work	JASO M349-01
2	Plate Clutch Friction Characteristic	To maintain good shift feeling for life	JASO M348-02
3	Shear Stability	To minimize leakage for life	JASO M347
4	De-Foaming Characteristics	To prevent ATF loss through AT breather	ASTM D892
5	Aniline Point	To avoid rubber swelling	JASO M315-04

JAMA's Requirement for ATF

JASO M315-02 Specifications

Test Item		Specification Class 1	Test Method		
Color		6. 0 - 8. 0	JIS K 2580		
Density		0. 82 -0. 900 g/cm ³	JIS K 2249		
Flash point °	С	Above 170 °C	JIS K 2265		
Fire point °C		Above 185 °C	ASTM E 659		
Kinetic viscos	sity	40 °C Report 100 °C Above 5. 7 mm ² /s	JIS K 2283		
Viscosity Index		Above 120	JIS K 2283		
Pour Point °C		Below -40 °C	JIS K 2269		
Copper Corrosio	on	Below 2	JIS K 2513		
Brookfield Visco	sity	-20 °C Report -30 °C ≤ 5000 mPa·s -40 °C ≤20000 mPa·s	ASTM D 2983		
Oxidation stability	8				
Compatibility of	matei	rials Resin			
Rubber					
Miscibility			JIS K 2269		

R	eport Item	Test Method
Elei	ment Analysis	
	Sulfur	JIS K 2541
	Nitrogen	JIS K 2609
	Chlorine	ASTM
		D 808
	Barium	
	Boron	
	Calcium	ASTM
	Magnesium	D 4951
	Phosphorus	
	Zinc	
	tralization aber	
	otal Base No.	JIS K 2501
T	otal Acid No.	J10 IX 2301
Wea	ar prevention	JPI 5S-32

JAMA's Requirement for ATF

- a) Good Anti-Shudder Property
- b) Anti-Shudder Durability for Life
- c) Low Viscosity
- d) Good μ Characteristics for Wet Clutch
- e) Good μ Stability for Wet Clutch
- f) Hi Shear Stability
- h) Anti-Oxidation Property
- j) Good De-foaming Characteristics
- k) Good Materials Compatibility

JASO M315-04

Japanese OEM Requirements for ATF

- 1) Background
- 2) ATF for Japanese Cars
- 3) JAMA's Requirement for ATF
- 4) Summary

Summary

- 1. The Japanese ATs need genuine parts ATF or superior ATF in both anti-shudder durability and frictional characteristics. And these important properties are specified in JASO M315.
- 2. Please select and choose a correct ATF type to make the car better in fuel economy, to drive comfortable, not to kill the AT. And please remember ATF is always transforming with the progress of the AT technology.

Thanks & Any Questions?

AMAL

JAPAN AUTOMOBILE MANUFACTURERS ASSOCIATION, INC.

Yasushi Ando, TOYOTA

<u>Contents :</u> JASO Diesel Oil Seminar 2009

Introduction

Engine & Oil Technologies

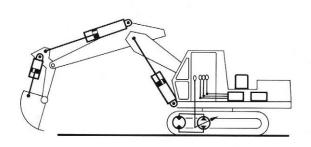
- Engine Technology
- Functions of Engine Oil & Examples

JASO Standards

- JASO DH-1 / DH-2 / DL-1
- JASO On-file System

Break 20'

Other Topics


- Biodiesel Fuel Impact on Diesel Engine and the Lubricant
- Japanese OEM Requirements for ATF
- Hydraulic Fluid Standards for Construction Machinery (JCMAS)

<u>Summary</u>

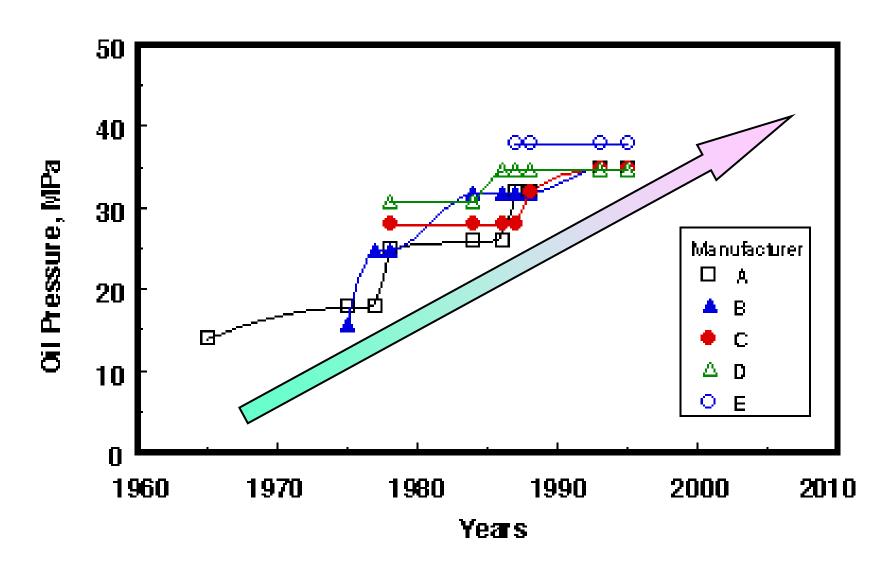
Discussion

HYDRAULIC FLUID SPECIFICATIONS FOR CONSTRUCTION MACHINERY

Fuel and Lubricant Technical Committee
Japan Construction Mechanization Association (JCMA)

Outline

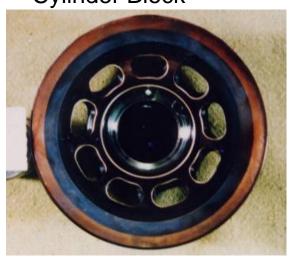
- Hydraulic Fluid Trends
- Needs for the New Specifications
- JCMAS Specifications
 - Categories
 - Physical / Chemical Requirements
 - Laboratory Bench Test Requirements
 - Rig Performance Test Requirements
- Quality Management System
- Summary


Hydraulic Fluid Trends

- Higher Pressures
 - Mobile equipment now at 300 bar, moving to 450 bar
- Smaller, Lighter Equipment
 - Reduced fluid volumes
 - Less residence time for cooling
- Higher Fluid Operating Temperatures
 - 80 ° C common for mobile equipment
 - 100+ ° C peak temperatures
- To be More Friendly with Environment
 - Soil / Water / Air / Noise

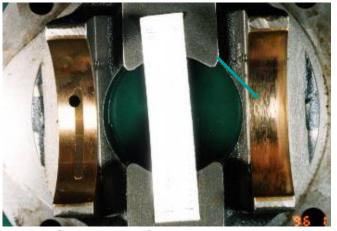
Improved Fluids are Required

Changes in Mobile Pump Pressure



Failure Examples of Komatsu HPV35+35 Piston Pump (1)

Normal Surface of Cylinder Block


Corroded Cylinder Block

Scratched Cylinder Block

Cavitation and Wear of Cylinder Bore

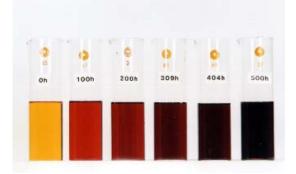
Scuffed Cradle Bearing


Copper Transfer on Mating Rocker-Cam

Failure Examples of Komatsu HPV35+35 Piston Pump (2)

Worn Piston Shoes

Scuffed Big Servo Piston


Pitting of Bearing

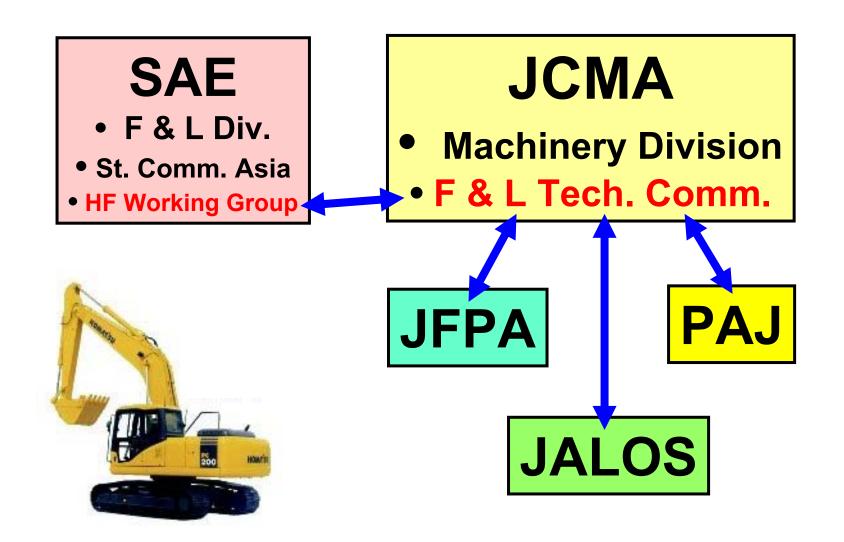
Scuffed Piston Shoes

Lacquer on Servo Piston
Caused Flow Reduction

Oil Deterioration

Needs for HF Specification by End-Users

- 75% of Japanese end-users; general contractors, repair shops and rental companies, require a new hydraulic fluid specification.
- Main focus of Japanese end-users requesting HF specification is improvement in hydraulic system durability.



a) Need Common Specification?

b) Specification Target?

Working Scheme for the Development of New Standards

Membership of JCMA F&L Tech. Committee

as of December 2008

Name	Organization	Туре	Category	
Genroku Sugiyama (Chair)	Hitachi Construction Machinery			
Satoshi Ohkawa	Komatsu Ltd.			
Atsuhiko Hirosawa	Komatsu Ltd.			
Yutaka Touji	Kobelco Construction Machinery			
Keiichiro Yamamoto	Kubota Corporation	Construction	Users	
Toshimitsu Kobayashi	Caterpillar Japan	Machinery	(63%)	
Hiroshi Ishiyama	Sumitomo Construction Machinery			
Hiroyasu Kodera	Kawasaki Heavy Industries			
Masato Nagao	Tadano Ltd.			
Shiro Yoshida	Mitsubishi Heavy Industry			
Takahisa Moriuchi	Hitachi Construction Machinery			
Tomoki Ando	Kayaba Industry	Component		
Shinichi Mitsumoto (Vice Chair)	Nippon Oil Corporation			
Yoshitaka Shiraga	Idemitsu Kosan	lh.vi.a.a.v.ta		
Hirohiko Ootsu	Showa Shell Sekiyu	Lubricants	Producers	
Jun Fujii	Cosmo Oil Lubricants		(37%)	
Noriyuki Naganuma			,	
Akihiro Mochizuki	Chevron Japan	Additives		
Hitoshi Hamaguchi	Evonik Degussa Japan	Additives		

User Language for JCMAS HK

JCMAS Hydraulic Oil Category HK describes oils for use in hydraulic system of all the construction equipment.

HK oils are effective to use in hydraulic systems designed to pressurize up to 34.3MPa (5000psi) and to heat oil up to 100 degrees Celsius. HK oils are divided into four categories by viscosity and low temperature fluidity. These oils provide performances controlling wear, oxidation, rust, and seal swelling. In addition, lubricating performance of these oils confirmed by a high-pressure piston pump test, a high-pressure vane pump test and a friction test.

Since drain interval and required performance in every hydraulic system are diversified, HK oils can be used by following individual construction equipment manufacturer's recommendation.

JCMAS Hydraulic Fluid Specifications

- Category, Grade and Viscometric Properties -

JCMA:	S	HK				HKB			
Classification		Single Grade		Multi Grade		Normal Climate Grade		Cold Climate Grade	
Code		VG32	VG46	VG32W	VG46W	VG32	VG46	VG32L	VG46L
Operating Temp	perature	> -	5℃	> - 25℃	> - 20°C	> -	5℃	> - 25°C	> - 20°C
ISO Viscosity	Grade	VG32	VG46	VG32	VG46	VG32	VG46	VG32	VG46
K. Viscosity at 40°C	, mm²/s	32 ± 3.2	46 ± 4.6	32 ± 3.2	46 ± 4.6	32 ± 3.2	46 ± 4.6	32 ± 3.2	46 ± 4.6
K. Viscosity at 100°	°C, mm²/s	5.0 min.	6.1 min.	5.3 min.	6.8 min.	5.3 min. 6.8 min. 5.3 min. 6.8 mir			6.8 min.
Viscosity Index		90 r	min.	120 min.				-	
Pour Point, ℃		- 18 max.	- 15 max.	- 39 max.	- 30 max.	- 18 max.	- 15 max.	- 39 max.	- 30 max.
Low Temperature	at - 10℃		-			Rej	ort	-	
Viscosity, mPas at - 20°C			-	-	5000 max.	5000 max		-	5000 max.
(Brookfield)	at - 25°C		_	5000 max.	-		-	5000 max.	-
Shear Stability *, % Viscosity Loss a	t 100℃		-	10 r	nax.	x			

^{*} Sonic Shear Stability Tests: Either ASTM D 5821 or API-5S-29

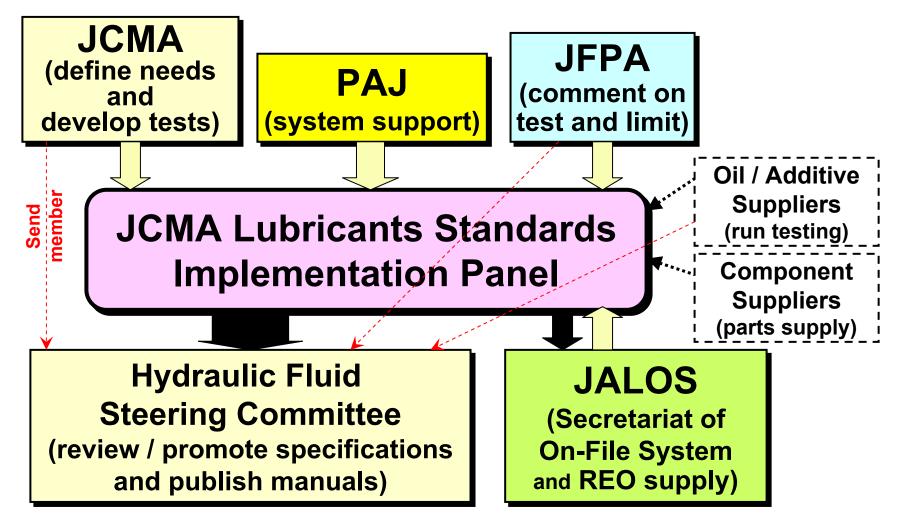
JCMAS Hydraulic Fluid Specifications (Cont.) - Physical / Chemical Properties -

F	Requirements	HK	HKB	
Density, g/cm ³		-	Report	
Color (ASTM)		-	Report	
Flash Point, °C		Rep	oort	
Foaming	at 24℃	50 / 0 max.		
(Tendency /	at 93.5℃	50 / 0 max.		
Stability), ml	at 24°C after 93.5°C	50 / 0 max.		
Aniline Point, °	С	90 min.	-	
Acid Value, mg	KOH/g	-	Report	
Water Content	, ppm	-	1000 max.	
Environmental	Biodegarability (28 Days), %		60 min.	
Acceptability	Acute Fish Toxicity (96h, LC50), mg/l	-	100 min.	

JCMAS Hydraulic Fluid Specifications (Cont.)

- Laboratory Bench Test Requirements -

	Requirements	HK	НКВ
	oility, AV Increase 000h), mgKOH/g	1.0 max.	-
Copper Corros	sion (100°C, 3h)	1 m	nax.
Rust-Preventin	ig (Procedure B)	Pa	ss
Elastomer	Change in Hardness, Grade	- 25 min.	- 40 / + 10
Compatibility	Change in Tensile Strength, %	- 50 max.	- 5 / + 70
[NBR]	Change in Elongation, %	- 50 max.	- 60 / + 20
(100°C, 240h)	Change in Volume, %	+ 30 max.	- 65 / + 20
Elastomer	Change in Hardness, Grade		-8/+8
Compatibility	Change in Tensile Strength, %	_	- 5 / + 15
[HNBR]	Change in Elongation, %	_	- 15 / + 20
(120°C, 240h)	Change in Volume, %		- 15 / + 20
Elastomer	Change in Hardness, Grade	-5/+5	Report
Compatibility	Change in Tensile Strength, %	- 30 max.	Report
[AU]	Change in Elongation, %	- 30 max.	Report
(120°C, 240h)	Change in Volume, %	-5/+5	Report
Hydrolytic	Copper Weight Loss, mg/cm ²		Report
Stability	Copper Color Change	-	Report
(95°C, 48h)	AV Increase, mgKOH/g		Report
Filterability (JC	CMAS P043), min.	Pass	-


JCMAS Hydraulic Fluid Specifications (Cont.)

- Mechanical Rig Test Requirements -

Red	juirements	HK	НКВ	
Load Carrying Capacity (JPI-5S-32: 4-Ball Metho		1235 min.		
Wear Preventive Proper (JPI-5S-40: 4-Ball Metho		0.6	nax.	
Load Carrying Capacity stage	(DIN 51354-3: FZG A/8, 3/90),	8 n	nin.	
High Pressure Piston Pour (JCMAS P044: Komatsu	•	Pass (Flow Rate, Wear, Used Oil Properties)	-	
High Pressure	Viscosity Increase Ratio, %	Or 10 max.	10 max.	
Piston Pump Test	AV Increase, mgKOH/g	2.0 max.	2.0 max.	
(JCMAS P045: Bosch Rexroth A2F-10)	Sludge (0.8µ Fliter), mg/100ml	10 max.	10 max.	
Nexioni Azi -iuj	Copper in Used Oil, mass-ppm	-	report	
Vane Pump Test	Ring Wear, mg	75 max.		
(ASTM D6973: Vickers 35VQ25, 150h)	Vane Wear, mg	15 max.	-	
Vane Pump Test (ASTM D2882:	Ring Wear, mg	50 max.	120 max.	
Vickers V104C, 100h)	Vane Wear, mg		30 max.	
Friction Characteristics (JCMAS P047: Micro Clu	utch Test), μ	0.08 min.		
Friction Characteristics (JCMAS P047: SAE No.2)		0.07 min.		

Organizations for JCMA On-File System

JCMA: Japan Construction Mechanization Association

JFPA: Japanese Fluid Power Association

PAJ: Petroleum Association of Japan JALOS: Japan Lubricating Oil Society

Summary

- Hydraulic fluid specifications for construction machineries
 (JCMAS HK/HKB) have been developed
- JCMAS HK is anti-wear type mineral based HF designed for high pressure / temperature applications
- JCMAS HKB is ester based biodegradable HF
- English version of the specifications and test procedures are available
- A quality management system has been implemented since 2007
- For more details, please visit http://jalos.or.jp/

Abbreviations

- JCMA Japan Construction Mechanization Association
- JCMAS JCMA Standards

(Construction Machinery in Japanese)←

- HK Hydraulic fluid specification for Kenki
- HKB HK with Biodegradability
- Grease specification for Kenki
- GKB GK with Biodegradability
- JFPA Japanese Fluid Power Association
- PAJ Petroleum Association of Japan
- JALOS Japan Lubricating Oil Society
- SAE Society of Automotive Engineers

<u>Contents :</u> JASO Diesel Oil Seminar 2009

Introduction

Engine & Oil Technologies

- Engine Technology
- Functions of Engine Oil & Examples

JASO Standards

- JASO DH-1 / DH-2 / DL-1
- JASO On-file System

Break 20'

Other Topics

- Biodiesel Fuel Impact on Diesel Engine and the Lubricant
- Japanese OEM Requirements for ATF
- Hydraulic Fluid Standards for Construction Machinery (JCMAS)

Summary

Discussion

Summary

- (1) Improving the quality of engine oils helps to achieve environmental protection and global warming reduction.
- (2) Engine oil works for engine protection.
- (3) JASO Standards for Japan-brand-engines.
 - > DH-1 ····· For High Sulfur Fuel Markets with below Euro III
 - > DH-2 / DL-1··· For DPFs with less 50 ppm S fuel & beyond Euro IV
- (4) JASO On-file System is:
 - > oil quality management system
 - > economical system compared with EOLCS and EELQMS
 - > to protect end-users and lubricant suppliers from fake oils
- (5) Detail information of JASO Standards available at

http://www.jalos.or.jp/ http://www.bookpark.ne.jp/jsae/book_e.asp

<u>Contents :</u> JASO Diesel Oil Seminar 2009

Introduction

Engine & Oil Technologies

- Engine Technology
- Functions of Engine Oil & Examples

JASO Standards

- JASO DH-1 / DH-2 / DL-1
- JASO On-file System

Break 20'

Other Topics

- Biodiesel Fuel Impact on Diesel Engine and the Lubricant
- Japanese OEM Requirements for ATF
- Hydraulic Fluid Standards for Construction Machinery (JACMAS)

<u>Summary</u>

Discussion

Abbreviations

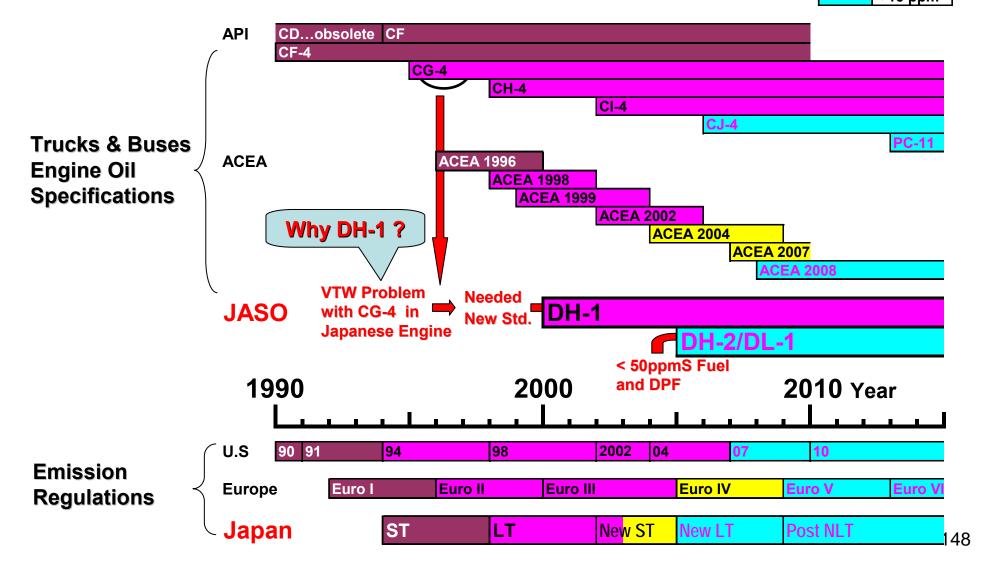
ACEA	Association of European Constructors of Automobiles	JP05	New Long Term exhaust emission regulation in Japan
AN	(Total) Acid Number	JP09	Post New Long Term exhaust emission regulation in Japan
API	American Petroleum Institute	JPI	Japanese Petroleum Institute
ASTM	American Society for Testing Materials	JPN	Japan
ATF	Automatic Transmission Fluid	JPY	Japanese Yen
BDF	Bio Diesel Fuel	JSAE	Society of Automotive Engineers of Japan
BN, TBN	(Total) Base Number	JAST	Japanese Society of Tribologists
B5	5% FAME blended diesel fuel	KV	Kinematic Viscosity
CEC	Coordinating European Council	LEMA	Land Engine Manufacturers Association
CO	Carbon Monoxide	LD	Light Duty (Truck)
CO ₂	Carbon Dioxide	MCMO	Motorcycle Motor Oil
CR	Common Rail (System)	ME	Methyl Ester
CR-	Continuously Regenerating	MD	Medium Duty (Truck)
DEO	Diesel Engine Oil	NA	Natural Aspirated (Engine)
DI	Direct Injection	NEDO	New Energy and Industrial Technology Development Organization
DOC	Diesel Oxidation Catalyst	NLT	New Long Term (Regulation)
DPF	Diesel Particulate Filter	NOx	Nitrogen Oxides
ECU	Electronic Control Unit	NST	New Short Term (Regulation)
EELQMS	European Engine Lubricant Quality Management System	NSR	NOx Storage Reduction (Catalyst)
EGR	Exhaust Gas Recirculation	OEM	Original Equipment Manufacturer
EOLCS	Engine Oil Licensing and Certification System	PAJ	Petroleum Association of Japan
EPA	Environmental Protection Agency	PCMO	Passenger Car Motor Oil
EU	European Union	PEC	Petroleum Energy Center
FC	Fuel Consumption	PM	Particulate Matter
F&L	Fuels & Lubricants	QM	Quality Management
FAME	Fatty Acid Methyl Ester	REO	Reference Engine Oil
HC	Hydrocarbon	RME	Rapeseed Methyl Ester
HD	Heavy Duty (Truck)	S-Ash	Sulfated Ash
HTHS	High Temperature High Shear	SAE	Society of Automotive Engineers
IDI	Indirect Injection	SCR	Selective Catalytic Reduction
JALOS	Japan Lubricating Oil Society	SOF	Soluble Organic Fraction
JAMA	Japan Automobile Manufacturers Association	TGF	Top Groove Filling
JASO	Japanese Automobile Standard Organization	TI	Turbo Intercooled (Engine)
JATOP	Japan Auto Oil Program	U.I.	Unit Injector
JBIA	Japan Boating Industry Association	U.P.	Unit Pump
JCAP	Japanese Clean Air Program	US	United States
JCMAS	Japan Construction Mechanization Association Standards	VG	Variable Geometry Turbo
JEOSIP	1466 - 1 676 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14/14/EC	Mand Mide Fiel Charter
	JASO Engine Oil Standards Implementation Panel	WWFC	World Wide Fuel Charter

	140	I I m i f	Perf	Test			
	Items	Unit	DH-1-05	DH-2-08	DL-1-08	Method	
Viscosity Grade			_	_	XW-30, XW-20	SAE J300	
	TGF(Top Groove Fill)	vol%	60.0 Max.	60.0 Max	60.0 Max		
Piston Detergency	Piston Ring Stickings		All free	All free	All free	JASO M 336	
Dotorgonoy	Deposits on Ring Lands	Merit Rating	Report	Report	Report		
Valve Train	Average Cam Diameter Loss (Normalized at 4.5 mass % Carbon Residue Increase)	μm	95.0 Max.	95.0 Max	95.0 Max		
Wear Protection	Maximum Cam Diameter Loss (Normalized at 4.5 mass % Carbon Residue Increase)	μm	210 Max.	210 Max	210 Max	JASO M 354	
	Cam Surface Wear		No pitting	No pitting	No pitting		
Soot Dispersancy	Viscosity Increase (100~150H) @100℃	mm²/s/h	0.2 Max.	0.2 Max.	0.2 Max.	ASTM D 5967	
High	Viscosity Increase@40°C or	%	200 Max.	200 Max.	_	ASTM D 5533	
Temperature Oxidation	Viscosity Increase@40°C(60H)	%	295 Max.	295 Max.	_	ASTM D 6984	
Stability	Viscosity Increase@40°C(80H)	%			275 Max.	ASTM D 6984	

	Items			Performance Criteria			Test
	items		Unit	DH-1-05	DH-2-08	DL-1-08	Method
Fuel Economy	Fuel Economy Improvement		%	_	I	2.5 Min.	CEC-L-54-T-96
Hot Surface Deposit Control	@280°C		Merit Rating	7.0 Min.	7.0 Min.	7.0 Min.	JPI-5S-55-99
	Sequence I		mL/mL	10/0 Max.	10/0 Max.	10/0 Max.	
Anti-foaming	Sequence II		mL/mL	50/0 Max.	50/0 Max.	50/0 Max.	JIS-K-2518:2003
	SequenceⅢ	Foaming/	mL/mL	10/0 Max.	10/0 Max.	10/0 Max.	
High Temperature Anti-foaming	SequenceIV	Stability	mL/mL	_	1	100/0 Max.	ASTM D 6082
Volatility	Evaporation Loss@250℃		mass %	18.0 Max.	18.0 Max.	15 Max	JPI-5S-41-2004

Itoms		I I sa i t	Perf	Performance Criteria		
	Items	Unit	DH-1-05	DH-2-08	DL-1-08	Method
	Copper	mass ppm	20 Max.	20 Max.	20 Max.	
	Lead	mass ppm	120 Max.	100 Max.	120 Max.	ASTM D 6594
Anti-corrosion	Tin	mass ppm	50 Max.	50 Max.	50 Max.	
	Discoloration of Copper Coupon after Test @135°C		3 Max	3 Max	3 Max	ASTM D 130
Shear Stability (NOTE 4)	Kinetic Viscosity of Oil after Test@100°C	mm²/s	Stay-in-grade of virgin oil viscosity classification in SAE J300		XW-30: 8.6 Min. XW-20: Stay-in- grade of virgin oil viscosity classificatio n in J300	ASTM D 6278
Sulfated Ash		mass %	-	1.0±0.1	0.6 Max.	JIS K 2272 1998 5.
Base Number		mgKOH/g	10.0 Min.	5.5 Min.	_	JIS K 2501 2003 8.
		0		_	_	ASTM D 4739
Phosphorus		mass %	_	0.12 Max.	0.10 Max	JPI-5S-38-2003
Sulfur		mass %	_	0.5 Max	0.5 Max	JIS K 2541 2003 5.
Chlorine		mass ppm	_	150 Max	150 Max	JPI-5S-64-2002

	14.	amo.	Linit	Per	Test				
	116	ems	Unit	DH-1-05	DH-2-08	DL-1-08	Method		
Seal Compati- bility		Hardness Change	Point	-1~+5	-1~+5	-1~+5			
	RE1	Tensile Strength Rate of Change	%	-40~+10	-50~+10	-40~+10			
	(Fluoro)	Elongation Rate of Change	%	-50~+10	-60~+10	-50~+10			
		Volume Rate of Change	%	-1~+5	-1~+5	-1~+5			
		Hardness Change	Point	-5~+8	-5~+8	-5~+8			
	RE2-99	Tensile Strength Rate of Change	%	-15~+18	-15~+18	-15~+18			
	(Acrylic)	Elongation Rate of Change	%	-35~+10	-35~+10	-35~+10			
		Volume Rate of Change	%	-7~+5	-7~+5	-7~+5			
		Hardness Change	Point	-25~+1	-25~+1	-25~+1			
	RE3	Tensile Strength Rate of Change	%	-45~+10	-45~+10	-45~+10	CEC-L-		
	(Silicon)	Elongation Rate of Change	%	-20~+10	-20~+10	-20~+10	39-T-96		
		Volume Rate of Change	%	-1~+30	-1~+30	-1~+30			
		Hardness Change	Point	-5~+5	-5~+5	-5~+5			
	RE4	Tensile Strength Rate of Change	%	-20~+10	-20~+10	-20~+10			
	(Nitrile)	Elongation Rate of Change	%	-50~+10	-50~+10	-50~+10			
		Volume Rate of Change	%	-5~+5	-5~+5	-5~+5			
	. =	Hardness Change	Point						
	AEM (Ethylen	Tensile Strength Rate of Change	%	Per ag					
	e	Elongation Rate of Change	%	cor					
	Acrylic)	Volume Rate of Change	%						



Position of JASO Standards

Global and Historical

Oil specifications are reflected in both emission regulations and fuel specifications.

Color	Fuel Sulfur							
	> 500 ppm							
	< 500 ppm							
	< 50 ppm							
	< 15 ppm							

API, ACEA & JASO Diesel Oil Specifications

for Trucks & Buses - Engine Tests -

Appendix 7

JASO DH-1 has less numbers of Engine Tests than API / ACEA .

	ACEA 2008			API							JA	SO		
	E4	E6	E7	E9	CD	CF	CF-4	CG-4	CH-4	CI-4 plus	CJ-4	DH-1	DH-2	
OM501LA OM602A / OM646LA	#	#	#	#										General performance
Cat 1G2 Cat 1K Cat 1M-PC Cat 1N Cat 1P Cat 1R Cat C-13					#	#	#	#	#	#	#			Piston Cleanliness
Nissan Diesel TD25 Cummins M11									#			#	#	Soot handling / wear
Cummins ISM Cummins ISB			#	#					•	#	# #			VTWear, Filter P, Sludge VTWear
Mack T-12		#	#	#						#	#			Ring, Liner, Bearing Wear
MACK T-11 MACK T-9 MACK T-8A MACK T-8 / 8E	#	#	#	#			#	#	#	#	#	#*	#*	Soot handling / wear
Mitsubishi Fuso 4D34T4												#	#	Soot handling / wear
Cummins NTC400							#							Oil cons / wear
SEQ IIIE / IIIF /IIIG								#	#	#	#	#	#	Oxidation / wear
CRC L-38 / SEQ VIII					#	#	#	#						Bearing corrosion
RFWT								#	#	#	#			Wear
EOAT Aeration Navistar								#	#	#	#			Dearation

API, ACEA & JASO Diesel Oil Specifications for Trucks & Buses

- Laboratory Tests -

	A	ACEA 2008 API					JA	SO								
	E4	E6	E7	E9	CD	CE	CF	CF-4	CG-4	CH-4	CI-4 plus	CJ-4	DH-1	DH-2		
SAE J300	#	#	#	#	#	#	#	#	#	#	#	#	#	#	Viscosity grade	
CEC L-36 /ASTM D4683	#	#	#	#	#	#	#	#	#	#	#	#	#	#	Viscosity(HTHS)	
ASTM D892/D6082	#	#	#	#					#	#	#	#	#	#	Foaming	
CEC L-39 / ASTM D471	#	#	#	#							#	#	#	#	Oil/elastomer compatibility	
CEC L-14 / ASTM D6278	#	#	#	#								#			Chaor atability	
ASTM D3945										#	#				Shear stability	
CEC L-40 / ASTM D2887	#	#	#	#			#	#	#	#	#	#	#	#	(Noack) Volatility	
ASTM D874	#	#	#	#										#	Sulfated ash	
ASTM D5185		#												#	Phosphorus	
ASTM D5185		#												#	Sulfur	
ASTM D4739/D2896	#												#	#	Base number	
JPI 5S-55													#	#	Hot surface deposit control	
CEC L-85			#	#											Oxidation(PDSC)	
ASTM D5968 / D6594			#					#	#	#	#	#	#	#	Corrosion(HTCBT/CBT)	